

Contents

	Overview
	Installation

	Documentation

	Overview

	Development

	FAQ

	Installation

	Introduction
	Installation

	The trace function

	The Q function

	Composing

	Operators

	Activation

	Remote tracing
	The CLI

	Cookbook
	Walkthrough

	Packaging

	Typical

	Needle in the haystack

	Stop after N calls

	Reference
	Functions

	Predicates

	Actions

	Objects

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	2.2.1 (2019-01-19)

	2.2.0 (2019-01-19)

	2.1.0 (2018-11-17)

	2.0.2 (2017-11-24)

	2.0.1 (2017-09-09)

	2.0.0 (2017-09-02)

	1.4.1 (2016-09-24)

	1.4.0 (2016-09-24)

	1.3.0 (2016-04-14)

	1.2.2 (2016-01-28)

	1.2.1 (2016-01-27)

	1.2.0 (2016-01-24)

	1.1.0 (2016-01-21)

	1.0.2 (2016-01-05)

	1.0.1 (2015-12-24)

	1.0.0 (2015-12-24)

	0.6.0 (2015-10-10)

	0.5.1 (2015-04-15)

	0.5.0 (2015-04-06)

	0.4.0 (2015-03-29)

	0.3.1 (2015-03-29)

	0.3.0 (2015-03-29)

	0.2.1 (2015-03-28)

	0.2.0 (2015-03-27)

	0.1.0 (2015-03-22)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/python-hunter]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/ionelmc/python-hunter] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/ionelmc/python-hunter] [image: Requirements Status] [https://requires.io/github/ionelmc/python-hunter/requirements/?branch=master]

[image: Coverage Status] [https://coveralls.io/r/ionelmc/python-hunter] [image: Coverage Status] [https://codecov.io/github/ionelmc/python-hunter]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/hunter] [image: PyPI Wheel] [https://pypi.org/project/hunter] [image: Supported versions] [https://pypi.org/project/hunter] [image: Supported implementations] [https://pypi.org/project/hunter]

[image: Commits since latest release] [https://github.com/ionelmc/python-hunter/compare/v2.2.1...master]

Hunter is a flexible code tracing toolkit, not for measuring coverage, but for debugging, logging, inspection and other
nefarious purposes. It has a simple Python API [https://python-hunter.readthedocs.io/en/latest/introduction.html],
a convenient terminal API and
a CLI tool to attach to processes.

	Free software: BSD 2-Clause License

Installation

pip install hunter

Documentation

https://python-hunter.readthedocs.io/

Overview

Basic use involves passing various filters to the trace option. An example:

import hunter
hunter.trace(module='posixpath', action=hunter.CallPrinter)

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
 /usr/lib/python3.5/posixpath.py:71 call => join(a='a')
 /usr/lib/python3.5/posixpath.py:76 line sep = _get_sep(a)
 /usr/lib/python3.5/posixpath.py:39 call => _get_sep(path='a')
 /usr/lib/python3.5/posixpath.py:40 line if isinstance(path, bytes):
 /usr/lib/python3.5/posixpath.py:43 line return '/'
 /usr/lib/python3.5/posixpath.py:43 return <= _get_sep: '/'
 /usr/lib/python3.5/posixpath.py:77 line path = a
 /usr/lib/python3.5/posixpath.py:78 line try:
 /usr/lib/python3.5/posixpath.py:79 line if not p:
 /usr/lib/python3.5/posixpath.py:81 line for b in p:
 /usr/lib/python3.5/posixpath.py:82 line if b.startswith(sep):
 /usr/lib/python3.5/posixpath.py:84 line elif not path or path.endswith(sep):
 /usr/lib/python3.5/posixpath.py:87 line path += sep + b
 /usr/lib/python3.5/posixpath.py:81 line for b in p:
 /usr/lib/python3.5/posixpath.py:91 line return path
 /usr/lib/python3.5/posixpath.py:91 return <= join: 'a/b'
'a/b'

In a terminal it would look like:

[image: _images/code-trace.png]

Custom actions

Output format can be controlled with “actions”. There’s an alternative CodePrinter action that doesn’t handle nesting (it was the default action until Hunter 2.0). Example:

import hunter
hunter.trace(module='posixpath', action=hunter.CodePrinter)

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
 /usr/lib/python3.5/posixpath.py:71 call def join(a, *p):
 /usr/lib/python3.5/posixpath.py:76 line sep = _get_sep(a)
 /usr/lib/python3.5/posixpath.py:39 call def _get_sep(path):
 /usr/lib/python3.5/posixpath.py:40 line if isinstance(path, bytes):
 /usr/lib/python3.5/posixpath.py:43 line return '/'
 /usr/lib/python3.5/posixpath.py:43 return return '/'
 ... return value: '/'
 /usr/lib/python3.5/posixpath.py:77 line path = a
 /usr/lib/python3.5/posixpath.py:78 line try:
 /usr/lib/python3.5/posixpath.py:79 line if not p:
 /usr/lib/python3.5/posixpath.py:81 line for b in p:
 /usr/lib/python3.5/posixpath.py:82 line if b.startswith(sep):
 /usr/lib/python3.5/posixpath.py:84 line elif not path or path.endswith(sep):
 /usr/lib/python3.5/posixpath.py:87 line path += sep + b
 /usr/lib/python3.5/posixpath.py:81 line for b in p:
 /usr/lib/python3.5/posixpath.py:91 line return path
 /usr/lib/python3.5/posixpath.py:91 return return path
 ... return value: 'a/b'
'a/b'

	or in a terminal:

[image: _images/simple-trace.png]

Another useful action is the VarsPrinter:

import hunter
note that this kind of invocation will also use the default `CallPrinter` action
hunter.trace(hunter.Q(module='posixpath', action=hunter.VarsPrinter('path')))

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
 /usr/lib/python3.5/posixpath.py:71 call def join(a, *p):
 /usr/lib/python3.5/posixpath.py:76 line sep = _get_sep(a)
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:39 call def _get_sep(path):
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:40 line if isinstance(path, bytes):
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:43 line return '/'
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:43 return return '/'
 ... return value: '/'
 /usr/lib/python3.5/posixpath.py:77 line path = a
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:78 line try:
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:79 line if not p:
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:81 line for b in p:
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:82 line if b.startswith(sep):
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:84 line elif not path or path.endswith(sep):
 vars path => 'a'
 /usr/lib/python3.5/posixpath.py:87 line path += sep + b
 vars path => 'a/b'
 /usr/lib/python3.5/posixpath.py:81 line for b in p:
 vars path => 'a/b'
 /usr/lib/python3.5/posixpath.py:91 line return path
 vars path => 'a/b'
 /usr/lib/python3.5/posixpath.py:91 return return path
 ... return value: 'a/b'
'a/b'

In a terminal it would look like:

[image: _images/vars-trace.png]

You can give it a tree-like configuration where you can optionally configure specific actions for parts of the
tree (like dumping variables or a pdb set_trace):

from hunter import trace, Q, Debugger
from pdb import Pdb

trace(
 # drop into a Pdb session if ``foo.bar()`` is called
 Q(module="foo", function="bar", kind="call", action=Debugger(klass=Pdb))
 | # or
 Q(
 # show code that contains "mumbo.jumbo" on the current line
 lambda event: event.locals.get("mumbo") == "jumbo",
 # and it's not in Python's stdlib
 stdlib=False,
 # and it contains "mumbo" on the current line
 source__contains="mumbo"
)
)

import foo
foo.func()

With a foo.py like this:

def bar():
 execution_will_get_stopped # cause we get a Pdb session here

def func():
 mumbo = 1
 mumbo = "jumbo"
 print("not shown in trace")
 print(mumbo)
 mumbo = 2
 print(mumbo) # not shown in trace
 bar()

We get:

>>> foo.func()
not shown in trace
 /home/ionel/osp/python-hunter/foo.py:8 line print(mumbo)
jumbo
 /home/ionel/osp/python-hunter/foo.py:9 line mumbo = 2
2
 /home/ionel/osp/python-hunter/foo.py:1 call def bar():
> /home/ionel/osp/python-hunter/foo.py(2)bar()
-> execution_will_get_stopped # cause we get a Pdb session here
(Pdb)

In a terminal it would look like:

[image: _images/tree-trace.png]

Tracing processes

In similar fashion to strace Hunter can trace other processes, eg:

hunter-trace --gdb -p 123

If you wanna play it safe (no messy GDB) then pip install 'hunter[remote]' and add this in your code:

from hunter import remote
remote.install()

Then you can do:

hunter-trace -p 123

See docs on the remote feature [https://python-hunter.readthedocs.org/en/latest/remote.html].

Note: Windows ain’t supported.

Environment variable activation

For your convenience environment variable activation is available. Just run your app like this:

PYTHONHUNTER="module='os.path'" python yourapp.py

On Windows you’d do something like:

set PYTHONHUNTER=module='os.path'
python yourapp.py

The activation works with a clever .pth file that checks for that env var presence and before your app runs does something
like this:

from hunter import *
trace(<whatever-you-had-in-the-PYTHONHUNTER-env-var>)

Note that Hunter is activated even if the env var is empty, eg: PYTHONHUNTER="".

Environment variable configuration

Sometimes you always use the same options (like stdlib=False or force_colors=True). To save typing you can
set something like this in your environment:

PYTHONHUNTERCONFIG="stdlib=False,force_colors=True"

This is the same as PYTHONHUNTER="stdlib=False,action=CallPrinter(force_colors=True)".

Notes:

	Setting PYTHONHUNTERCONFIG alone doesn’t activate hunter.

	All the options for the builtin actions are supported.

	Although using predicates is supported it can be problematic. Example of setup that won’t trace anything:

PYTHONHUNTERCONFIG="Q(module_sw='django')"
PYTHONHUNTER="Q(module_sw='celery')"

which is the equivalent of:

PYTHONHUNTER="Q(module_sw='django'),Q(module_sw='celery')"

which is the equivalent of:

PYTHONHUNTER="Q(module_sw='django')&Q(module_sw='celery')"

Filtering DSL

Hunter supports a flexible query DSL, see the introduction [https://python-hunter.readthedocs.org/en/latest/introduction.html].

Development

To run the all tests run:

tox

FAQ

Why not Smiley?

There’s some obvious overlap with smiley [https://pypi.python.org/pypi/smiley] but there are few fundamental differences:

	Complexity. Smiley is simply over-engineered:

	It uses IPC and a SQL database.

	It has a webserver. Lots of dependencies.

	It uses threads. Side-effects and subtle bugs are introduced in your code.

	It records everything. Tries to dump any variable. Often fails and stops working.

Why do you need all that just to debug some stuff in a terminal? Simply put, it’s a nice idea but the design choices work
against you when you’re already neck-deep into debugging your own code. In my experience Smiley has been very buggy and
unreliable. Your mileage may vary of course.

	Tracing long running code. This will make Smiley record lots of data, making it unusable.

Now because Smiley records everything, you’d think it’s better suited for short programs. But alas, if your program runs
quickly then it’s pointless to record the execution. You can just run it again.

It seems there’s only one situation where it’s reasonable to use Smiley: tracing io-bound apps remotely. Those apps don’t
execute lots of code, they just wait on network so Smiley’s storage won’t blow out of proportion and tracing overhead might
be acceptable.

	Use-cases. It seems to me Smiley’s purpose is not really debugging code, but more of a “non interactive monitoring” tool.

In contrast, Hunter is very simple:

	Few dependencies.

	Low overhead (tracing/filtering code has an optional Cython extension).

	No storage. This simplifies lots of things.

The only cost is that you might need to run the code multiple times to get the filtering/actions right. This means Hunter is
not really suited for “post-mortem” debugging. If you can’t reproduce the problem anymore then Hunter won’t be of much help.

Why not pytrace?

Pytrace [https://pypi.python.org/pypi/pytrace] is another tracer tool. It seems quite similar to Smiley - it uses a sqlite
database for the events, threads and IPC.

TODO: Expand this.

Why (not) coverage?

For purposes of debugging coverage [https://pypi.python.org/pypi/coverage] is a great tool but only as far as “debugging
by looking at what code is (not) run”. Checking branch coverage is good but it will only get you as far.

From the other perspective, you’d be wondering if you could use Hunter to measure coverage-like things. You could do it but
for that purpose Hunter is very “rough”: it has no builtin storage. You’d have to implement your own storage. You can do it
but it wouldn’t give you any advantage over making your own tracer if you don’t need to “pre-filter” whatever you’re
recording.

In other words, filtering events is the main selling point of Hunter - it’s fast (cython implementation) and the query API is
flexible enough.

Installation

At the command line:

pip install hunter

Introduction

Installation

To install hunter run:

pip install hunter

The trace function

The hunter.trace function can take 2 types of arguments:

	Keyword arguments like module, function or action. This is for convenience.

	Callbacks that take an event argument:

	Builtin predicates like: hunter.Query, hunter.When, hunter.And or hunter.Or.

	Actions like: hunter.CodePrinter, hunter.Debugger or hunter.VarsPrinter

	Any function. Or a disgusting lambda.

Note that hunter.trace will use hunter.Q when you pass multiple positional arguments or keyword arguments.

The Q function

The hunter.Q function provides a convenience API for you:

	Q(module='foobar') is converted to Query(module='foobar').

	Q(module='foobar', action=Debugger) is converted to When(Query(module='foobar'), Debugger).

	Q(module='foobar', actions=[CodePrinter, VarsPrinter('name')]) is converted to
When(Query(module='foobar'), CodePrinter, VarsPrinter('name')).

	Q(Q(module='foo'), Q(module='bar')) is converted to And(Q(module='foo'), Q(module='bar')).

	Q(your_own_callback, module='foo') is converted to And(your_own_callback, Q(module='foo')).

Note that the default junction hunter.Q uses is hunter.And.

Composing

All the builtin predicates (hunter.Query, hunter.When, hunter.And and hunter.Or) support
the |, & and ~ operators:

	Query(module='foo') | Query(module='bar') is converted to Or(Query(module='foo'), Query(module='bar'))

	Query(module='foo') & Query(module='bar') is converted to And(Query(module='foo'), Query(module='bar'))

	~Query(module='foo') is converted to Not(Query(module='foo'))

Operators

New in version 1.0.0.

You can add startswith, endswith, in, contains, regex to your keyword arguments, just like in Django.
Double underscores are not necessary, but in case you got twitchy fingers it’ll just work - filename__startswith is the
same as filename_startswith.

Examples:

	Query(module_in=['re', 'sre', 'sre_parse']) will match events from any of those modules.

	~Query(module_in=['re', 'sre', 'sre_parse']) will match events from any modules except those.

	Query(module_startswith=['re', 'sre', 'sre_parse']) will match any events from modules that starts with either of
those. That means repr will match!

	Query(module_regex='(re|sre.*)$') will match any events from re or anything that starts with sre.

Note

If you want to filter out stdlib stuff you’re better off with using Query(stdlib=False).

Activation

You can activate Hunter in two ways.

via code

import hunter
hunter.trace(
 ...
)

via environment variable

Set the PYTHONHUNTER environment variable. Eg:

PYTHONHUNTER="module='os.path'" python yourapp.py

On Windows you’d do something like:

set PYTHONHUNTER=module='os.path'
python yourapp.py

The activation works with a clever .pth file that checks for that env var presence and before your app runs does something like this:

from hunter import *
trace(
 <whatever-you-had-in-the-PYTHONHUNTER-env-var>
)

That also means that it will do activation even if the env var is empty, eg: PYTHONHUNTER="".

Remote tracing

Hunter supports tracing local processes, with two backends:
manhole [https://pypi.python.org/pypi/manhole] (pip install 'hunter[remote]') and GDB.

Using GDB is risky (if anything goes wrong your process will probably be hosed up badly) so the Manhole backend is
recommended. To use it:

from hunter import remote
remote.install()

You should put this somewhere where it’s run early in your project (settings or package’s __init__.py file).

The remote.install() takes same arguments as manhole.install(). You’ll probably only want to use verbose=False …

The CLI

usage: hunter-trace [-h] -p PID [-t TIMEOUT] [--gdb] [-s SIGNAL]
 [OPTIONS [OPTIONS ...]]

	positional arguments:

	OPTIONS

	optional arguments:

	
	-h, --help

	show this help message and exit

	-p PID, --pid PID

	A numerical process id.

	-t TIMEOUT, --timeout TIMEOUT

	Timeout to use. Default: 1 seconds.

	--gdb

	Use GDB to activate tracing. WARNING: it may deadlock
the process!

	-s SIGNAL, --signal SIGNAL

	Send the given SIGNAL to the process before
connecting.

The OPTIONS are hunter.trace() arguments.

Cookbook

When in doubt, use Hunter.

Walkthrough

Sometimes you just want to get an overview of an unfamiliar application code, eg: only see calls/returns/exceptions.

In this situation, you could use something like
~Q(kind="line"),~Q(module_in=["six","pkg_resources"]),~Q(filename=""),stdlib=False. Lets break that down:

	~Q(kind="line") means skip line events (~ is a negation of the filter).

	stdlib=False means we don’t want to see anything from stdlib.

	~Q(module_in=["six","pkg_resources")] means we’re tired of seeing stuff from those modules in site-packages.

	~Q(filename="") is necessary for filtering out events that come from code without a source (like the interpreter
bootstrap stuff).

You would run the application (in Bash) like:

PYTHONHUNTER='~Q(kind="line"),~Q(module_in=["six","pkg_resources"]),~Q(filename=""),stdlib=False' myapp (or python myapp.py)

Additionally you can also add a depth filter (eg: depth_lt=10) to avoid too deep output.

Packaging

I frequently use Hunter to figure out how distutils/setuptools work. It’s very hard to figure out what’s going on by just
looking at the code - lots of stuff happens at runtime. If you ever tried to write a custom command you know what I mean.

To show everything that is being run:

PYTHONHUNTER='module_startswith=["setuptools", "distutils", "wheel"]' python setup.py bdist_wheel

If you want too see some interesting variables:

PYTHONHUNTER='module_startswith=["setuptools", "distutils", "wheel"], actions=[CodePrinter, VarsPrinter("self.bdist_dir")]' python setup.py bdist_wheel

Typical

Normally you’d only want to look at your code. For that purpose, there’s the stdlib option. Set it to False.

Building a bit on the previous example, if I have a build Distutils command and I only want to see my code then I’d run
this:

PYTHONHUNTER='stdlib=False' python setup.py build

But this also means I’d be seeing anything from site-packages. I could filter on only the events from the current
directory (assuming the filename is going to be a relative path):

PYTHONHUNTER='~Q(filename_startswith="/")' python setup.py build

Needle in the haystack

If the needle might be though the stdlib then you got not choice. But some of the hay is very verbose and useless, like
stuff from the re module.

Note that there are few “hidden” modules like sre, sre_parse, sre_compile etc. You can filter that out with:

~Q(module_regex="(re|sre.*)$")

Although filtering out that regex stuff can cut down lots of useless output you usually still get lots of output.

Another way, if you got at least some vague idea of what might be going on is to “grep” for sourcecode. Example, to show all
the code that does something with a build_dir property:

source_contains=".build_dir"

You could even extend that a bit to dump some variables:

source_contains=".build_dir", actions=[CodePrinter, VarsPrinter("self.build_dir")]

Stop after N calls

Say you want to stop tracing after 1000 events, you’d do this:

~Q(calls_gt=1000, action=Stop)

Explanation:

Q(calls_gt=1000, action=Stop) will translate to When(Query(calls_gt=1000), Stop)

Q(calls_gt=1000) will return True when 1000 call count is hit.

When(something, Stop) will call Stop when something returns True. However it will also return the result of something - the net effect being nothing being shown up to 1000 calls. Clearly not what we want …

So then we invert the result, ~When(...) is the same as Not(When).

This may not seem intuitive but for now it makes internals simpler. If When would always return True then
Or(When, When) would never run the second When and we’d need to have all sorts of checks for this. This may
change in the future however.

Reference

	Functions

	Predicates

	Actions

	Objects

Functions

	
hunter.trace(*predicates, clear_env_var=False, action=CodePrinter, actions=[], **kwargs)

	Starts tracing. Can be used as a context manager (with slightly incorrect semantics - it starts tracing
before __enter__ is called).

	Parameters

	*predicates (callables) – Runs actions if all of the given predicates match.

	Keyword Arguments

	
	clear_env_var – Disables tracing in subprocess. Default: False.

	threading_support – Enable tracing new threads. Default: None.

Modes:

	None - automatic (enabled but actions only prefix with thread name if more than 1 thread)

	False - completely disabled

	True - enabled (actions always prefix with thread name)

You can also use:
threads_support, thread_support, threadingsupport, threadssupport, threadsupport,
threading, threads or thread.

	action – Action to run if all the predicates return True. Default: CodePrinter.

	actions – Actions to run (in case you want more than 1).

	**kwargs – for convenience you can also pass anything that you’d pass to hunter.Q

	
hunter.stop()

	Stop tracing. Restores previous tracer (if there was any).

	
hunter.Q(*predicates, **query)

	Handles situations where hunter.Query objects (or other callables) are passed in as positional arguments.
Conveniently converts that to an hunter.And predicate.

	
hunter.wrap(function_to_trace=None, **trace_options)

	Functions decorated with this will be traced.

Use local=True to only trace local code, eg:

@hunter.wrap(local=True)
def my_function():
 ...

Keyword arguments are allowed, eg:

@hunter.wrap(action=hunter.CallPrinter)
def my_function():
 ...

Or, filters:

@hunter.wrap(module='foobar')
def my_function():
 ...

Predicates

	
class hunter.Query

	A query class.

See hunter.Event for fields that can be filtered on.

	
__and__

	Convenience API so you can do Q() & Q(). It converts that to And(Q(), Q()).

	
__call__

	Handles event. Returns True if all criteria matched.

	
__eq__

	x.__eq__(y) <==> x==y

	
__ge__

	x.__ge__(y) <==> x>=y

	
__gt__

	x.__gt__(y) <==> x>y

	
__hash__

	

	
__init__

	Args –

query: criteria to match on.

Accepted arguments:
arg,
calls,
code,
depth,
filename,
frame,
fullsource,
function,
globals,
kind,
lineno,
locals,
module,
source,
stdlib,
threadid,
threadname.

	
__invert__

	x.__invert__() <==> ~x

	
__le__

	x.__le__(y) <==> x<=y

	
__lt__

	x.__lt__(y) <==> x<y

	
__ne__

	x.__ne__(y) <==> x!=y

	
__new__(S, ...) → a new object with type S, a subtype of T

	

	
__or__

	Convenience API so you can do Q() | Q(). It converts that to Or(Q(), Q()).

	
__rand__

	x.__rand__(y) <==> y&x

	
__repr__

	

	
__ror__

	x.__ror__(y) <==> y|x

	
__str__

	

	
class hunter.When

	Runs actions when condition(event) is True.

Actions take a single event argument.

	
__and__

	x.__and__(y) <==> x&y

	
__call__

	Handles the event.

	
__eq__

	x.__eq__(y) <==> x==y

	
__ge__

	x.__ge__(y) <==> x>=y

	
__gt__

	x.__gt__(y) <==> x>y

	
__hash__

	

	
__init__

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__invert__

	x.__invert__() <==> ~x

	
__le__

	x.__le__(y) <==> x<=y

	
__lt__

	x.__lt__(y) <==> x<y

	
__ne__

	x.__ne__(y) <==> x!=y

	
__new__(S, ...) → a new object with type S, a subtype of T

	

	
__or__

	x.__or__(y) <==> x|y

	
__rand__

	x.__rand__(y) <==> y&x

	
__repr__

	

	
__ror__

	x.__ror__(y) <==> y|x

	
__str__

	

	
hunter.And(*predicates, **kwargs)

	And predicate. Returns False at the first sub-predicate that returns False.

	
hunter.Or(*predicates, **kwargs)

	Or predicate. Returns True at the first sub-predicate that returns True.

Actions

	
class hunter.CallPrinter(stream=sys.stderr, filename_alignment=40, force_colors=False, repr_limit=512)

	An action that just prints the code being executed, but unlike hunter.CodePrinter it indents based on
callstack depth and it also shows repr() of function arguments.

	Parameters

	
	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

New in version 1.2.0.

	
__call__(event)

	Handle event and print filename, line number and source code. If event.kind is a return or exception also
prints values.

	
__init__(**options)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class hunter.CodePrinter(stream=sys.stderr, filename_alignment=40, force_colors=False, repr_limit=512)

	An action that just prints the code being executed.

	Parameters

	
	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	
__call__(event)

	Handle event and print filename, line number and source code. If event.kind is a return or exception also
prints values.

	
class hunter.Debugger(klass=pdb.Pdb, **kwargs)

	An action that starts pdb.

	
__call__(event)

	Runs a pdb.set_trace at the matching frame.

	
__eq__(other)

	x.__eq__(y) <==> x==y

	
__init__()

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__repr__() <==> repr(x)

	

	
__str__() <==> str(x)

	

	
class hunter.VarsPrinter(name, [name, [name, [...,]]]globals=False, stream=sys.stderr, filename_alignment=40, force_colors=False, repr_limit=512)

	An action that prints local variables and optionally global variables visible from the current executing frame.

	Parameters

	
	*names (strings) – Names to evaluate. Expressions can be used (will only try to evaluate if all the variables are
present on the frame.

	globals (bool) – Allow access to globals. Default: False (only looks at locals).

	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	
__call__(event)

	Handle event and print the specified variables.

	
__init__(*names, **options)

	x.__init__(…) initializes x; see help(type(x)) for signature

Objects

	
class hunter.event.Event(frame, kind, arg, tracer)

	Event wrapper for frame, kind, arg (the arguments the settrace function gets). This objects is passed to your
custom functions or predicates.

Provides few convenience properties.

Warning

Users do not instantiate this directly.

	
arg = None

	A value that depends on kind

	
calls = None

	A counter for total number of calls up to this Event

	
code

	A code object (not a string).

	
depth = None

	Tracing depth (increases on calls, decreases on returns)

	
filename

	A string with absolute path to file.

	
frame = None

	The original Frame object.

	
fullsource

	A string with the sourcecode for the current statement (from linecache - failures are ignored).

May include multiple lines if it’s a class/function definition (will include decorators).

	
function

	A string with function name.

	
globals

	A dict with global variables.

	
kind = None

	The kind of the event, could be one of ‘call’, ‘line’, ‘return’, ‘exception’,
‘c_call’, ‘c_return’, or ‘c_exception’.

	
lineno

	An integer with line number in file.

	
locals

	A dict with local variables.

	
module

	A string with module name (eg – "foo.bar").

	
source

	A string with the sourcecode for the current line (from linecache - failures are ignored).

Fast but sometimes incomplete.

	
stdlib

	A boolean flag. True if frame is in stdlib.

	
thread

	Current thread object.

	
threadid

	Current thread ident. If current thread is main thread then it returns None.

	
threadname

	Current thread name.

	
tracer = None

	A reference to the Tracer object

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/ionelmc/python-hunter/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Hunter could always use more documentation, whether as part of the
official Hunter docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/ionelmc/python-hunter/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-hunter for local development:

	Fork python-hunter [https://github.com/ionelmc/python-hunter]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/python-hunter.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/ionelmc/python-hunter/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Ionel Cristian Mărieș - https://blog.ionelmc.ro

Changelog

2.2.1 (2019-01-19)

	Fixed a link in changelog.

	Fixed some issues in the Travis configuration.

2.2.0 (2019-01-19)

	Added From predicate for tracing from a specific point. It stop after returning back to the same call depth with
a configurable offset.

	Fixed PYTHONHUNTERCONFIG not working in some situations (config values were resolved at the wrong time).

	Made tests in CI test the wheel that will eventually be published to PyPI
(tox-wheel [https://pypi.org/project/tox-wheel/]).

	Made event.stdlib more reliable: pkg_resources is considered part of stdlib and few more paths will be
considered as stdlib.

	Dumbed down the get_peercred check that is done when attaching with hunter-trace CLI (via
hunter.remote.install()). It will be slightly insecure but will work on OSX.

	Added OSX in the Travis test grid.

2.1.0 (2018-11-17)

	Made threading_support on by default but output automatic (also, now 1 or 0 allowed).

	Added pid_alignment and force_pid action options to show a pid prefix.

	Fixed some bugs around __eq__ in various classes.

	Dropped Python 3.3 support.

	Dropped dependency on fields [https://python-fields.readthedocs.io/en/stable/].

	Actions now repr using a simplified implementation that tries to avoid calling __repr__ on user classes in order
to avoid creating side-effects while tracing.

	Added support for the PYTHONHUNTERCONFIG environment variable (stores defaults and doesn’t activate hunter).

2.0.2 (2017-11-24)

	Fixed indentation in CallPrinter action (shoudln’t deindent on exception).

	Fixed option filtering in Cython Query implementation (filtering on tracer was allowed by mistake).

	Various fixes to docstrings and docs.

2.0.1 (2017-09-09)

	Now Py_AddPendingCall is used instead of acquiring the GIL (when using GDB).

2.0.0 (2017-09-02)

	Added the Event.count and Event.calls attributes.

	Added the lt/lte/gt/gte lookups.

	Added convenience aliases for startswith (sw), endswith (ew) and regex (rx).

	Added a convenience hunter.wrap decorator to start tracing around a function.

	Added support for remote tracing (with two backends: manhole [https://pypi.python.org/pypi/manhole] and GDB) via
the hunter-trace bin. Note: Windows is NOT SUPPORTED.

	Changed the default action to CallPrinter. You’ll need to use action=CodePrinter if you want the old output.

1.4.1 (2016-09-24)

	Fix support for getting sources for Cython module (it was broken on Windows and Python3.5+).

1.4.0 (2016-09-24)

	Added support for tracing Cython modules (#30 [https://github.com/ionelmc/python-hunter/issues/30]). A
cython: linetrace=True stanza or equivalent is required in Cython modules for this to work.

1.3.0 (2016-04-14)

	Added Event.thread.

	Added Event.threadid and Event.threadname (available for filtering with Q objects).

	Added threading_support argument to hunter.trace: makes new threads be traced and changes action output to include
threadname.

	Added support for using pdb++ [https://pypi.python.org/pypi/pdbpp] in the Debugger action.

	Added support for using manhole [https://pypi.python.org/pypi/manhole] via a new Manhole action.

	Made the handler a public but readonly property of Tracer objects.

1.2.2 (2016-01-28)

	Fix broken import. Require fields>=4.0.

	Simplify a string check in Cython code.

1.2.1 (2016-01-27)

	Fix “KeyError: ‘normal’” bug in CallPrinter. Create the NO_COLORS dict from the COLOR dicts. Some keys were missing.

1.2.0 (2016-01-24)

	Fixed printouts of objects that return very large string in __repr__(). Trimmed to 512. Configurable in actions with the
repr_limit option.

	Improved validation of VarsPrinter’s initializer.

	Added a CallPrinter action.

1.1.0 (2016-01-21)

	Implemented a destructor (__dealloc__) for the Cython tracer.

	Improved the restoring of the previous tracer in the Cython tracer (use PyEval_SetTrace) directly.

	Removed tracer as an allowed filtering argument in hunter.Query.

	Add basic validation (must be callable) for positional arguments and actions passed into hunter.Q. Closes
#23 [https://github.com/ionelmc/python-hunter/issues/23].

	Fixed stdlib checks (wasn’t very reliable). Closes #24 [https://github.com/ionelmc/python-hunter/issues/24].

1.0.2 (2016-01-05)

	Fixed missing import in setup.py.

1.0.1 (2015-12-24)

	Fix a compile issue with the MSVC compiler (seems it don’t like the inline option on the fast_When_call).

1.0.0 (2015-12-24)

	Implemented fast tracer and query objects in Cython. MAY BE BACKWARDS INCOMPATIBLE

To force using the old pure-python implementation set the PUREPYTHONHUNTER environment variable to non-empty value.

	Added filtering operators: contains, startswith, endswith and in. Examples:

	Q(module_startswith='foo' will match events from foo, foo.bar and foobar.

	Q(module_startswith=['foo', 'bar'] will match events from foo, foo.bar, foobar, bar, bar.foo and baroo .

	Q(module_endswith='bar' will match events from foo.bar and foobar.

	Q(module_contains='ip' will match events from lipsum.

	Q(module_in=['foo', 'bar'] will match events from foo and bar.

	Q(module_regex=r"(re|sre.*)\b") will match events from ``re, re.foobar, srefoobar but not from repr.

	Removed the merge option. Now when you call hunter.trace(...) multiple times only the last one is active.
BACKWARDS INCOMPATIBLE

	Remove the previous_tracer handling. Now when you call hunter.trace(...) the previous tracer (whatever was in
sys.gettrace()) is disabled and restored when hunter.stop() is called. BACKWARDS INCOMPATIBLE

	Fixed CodePrinter to show module name if it fails to get any sources.

0.6.0 (2015-10-10)

	Added a clear_env_var option on the tracer (disables tracing in subprocess).

	Added force_colors option on VarsPrinter and CodePrinter.

	Allowed setting the stream to a file name (option on VarsPrinter and CodePrinter).

	Bumped up the filename alignment to 40 cols.

	If not merging then self is not kept as a previous tracer anymore.
Closes #16 [https://github.com/ionelmc/python-hunter/issues/16].

	Fixed handling in VarsPrinter: properly print eval errors and don’t try to show anything if there’s an AttributeError.
Closes #18 [https://github.com/ionelmc/python-hunter/issues/18].

	Added a stdlib boolean flag (for filtering purposes).
Closes #15 [https://github.com/ionelmc/python-hunter/issues/15].

	Fixed broken frames that have “None” for filename or module (so they can still be treated as strings).

	Corrected output files in the install_lib command so that pip can uninstall the pth file.
This only works when it’s installed with pip (sadly, setup.py install/develop and pip install -e will still
leave pth garbage on pip uninstall hunter).

0.5.1 (2015-04-15)

	Fixed Event.globals to actually be the dict of global vars (it was just the locals).

0.5.0 (2015-04-06)

	Fixed And and Or “single argument unwrapping”.

	Implemented predicate compression. Example: Or(Or(a, b), c) is converted to Or(a, b, c).

	Renamed the Event.source to Event.fullsource.

	Added Event.source that doesn’t do any fancy sourcecode tokenization.

	Fixed Event.fullsource return value for situations where the tokenizer would fail.

	Made the print function available in the PYTHONHUNTER env var payload.

	Added a __repr__ for Event.

0.4.0 (2015-03-29)

	Disabled colors for Jython (contributed by Claudiu Popa in #12 [https://github.com/ionelmc/python-hunter/pull/12]).

	Test suite fixes for Windows (contributed by Claudiu Popa in #11 [https://github.com/ionelmc/python-hunter/pull/11]).

	Added an introduction section in the docs.

	Implemented a prettier fallback for when no sources are available for that frame.

	Implemented fixups in cases where you use action classes as a predicates.

0.3.1 (2015-03-29)

	Forgot to merge some commits …

0.3.0 (2015-03-29)

	Added handling for internal repr failures.

	Fixed issues with displaying code that has non-ascii characters.

	Implemented better display for call frames so that when a function has decorators the
function definition is shown (instead of just the first decorator).
See: #8 [https://github.com/ionelmc/python-hunter/issues/8].

0.2.1 (2015-03-28)

	Added missing color entry for exception events.

	Added Event.line property. It returns the source code for the line being run.

0.2.0 (2015-03-27)

	Added color support (and colorama as dependency).

	Added support for expressions in VarsPrinter.

	Breaking changes:

	Renamed F to Q. And Q is now just a convenience wrapper for Query.

	Renamed the PYTHON_HUNTER env variable to PYTHONHUNTER.

	Changed When to take positional arguments.

	Changed output to show 2 path components (still not configurable).

	Changed VarsPrinter to take positional arguments for the names.

	Improved error reporting for env variable activation (PYTHONHUNTER).

	Fixed env var activator (the .pth file) installation with setup.py install (the “egg installs”) and
setup.py develop/pip install -e (the “egg links”).

0.1.0 (2015-03-22)

	First release on PyPI.

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | K
 | L
 | M
 | O
 | Q
 | S
 | T
 | V
 | W

_

 	
 	__and__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__call__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__call__() (hunter.CallPrinter method)

 	(hunter.CodePrinter method)

 	(hunter.Debugger method)

 	(hunter.VarsPrinter method)

 	__eq__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__eq__() (hunter.Debugger method)

 	__ge__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__gt__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__hash__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__init__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__init__() (hunter.CallPrinter method)

 	(hunter.Debugger method)

 	(hunter.VarsPrinter method)

 	
 	__invert__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__le__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__lt__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__ne__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__new__() (hunter.Query method)

 	(hunter.When method)

 	__or__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__rand__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__repr__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__repr__() (hunter.Debugger method)

 	__ror__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__str__ (hunter.Query attribute)

 	(hunter.When attribute)

 	__str__() (hunter.Debugger method)

A

 	
 	And() (in module hunter)

 	
 	arg (hunter.event.Event attribute)

C

 	
 	CallPrinter (class in hunter)

 	calls (hunter.event.Event attribute)

 	
 	code (hunter.event.Event attribute)

 	CodePrinter (class in hunter)

D

 	
 	Debugger (class in hunter)

 	
 	depth (hunter.event.Event attribute)

E

 	
 	Event (class in hunter.event)

F

 	
 	filename (hunter.event.Event attribute)

 	frame (hunter.event.Event attribute)

 	
 	fullsource (hunter.event.Event attribute)

 	function (hunter.event.Event attribute)

G

 	
 	globals (hunter.event.Event attribute)

K

 	
 	kind (hunter.event.Event attribute)

L

 	
 	lineno (hunter.event.Event attribute)

 	
 	locals (hunter.event.Event attribute)

M

 	
 	module (hunter.event.Event attribute)

O

 	
 	Or() (in module hunter)

Q

 	
 	Q() (in module hunter)

 	
 	Query (class in hunter)

S

 	
 	source (hunter.event.Event attribute)

 	
 	stdlib (hunter.event.Event attribute)

 	stop() (in module hunter)

T

 	
 	thread (hunter.event.Event attribute)

 	threadid (hunter.event.Event attribute)

 	
 	threadname (hunter.event.Event attribute)

 	trace() (in module hunter)

 	tracer (hunter.event.Event attribute)

V

 	
 	VarsPrinter (class in hunter)

W

 	
 	When (class in hunter)

 	
 	wrap() (in module hunter)

 _static/comment.png

_static/down-pressed.png

_images/code-trace.png
>>> os.path.join('a', 'b')

Jusr/1ib/python3.5/posixpath.py: call => join(a='a')
Jusr/1ib/python3.5/posixpath.py: Tine sep = _get_sep(a)
Jusr/1ib/python3.5/posixpath.py: call _get_sep(path='a')
Jusr/1ib/python3.5/posixpath.py: Tine if isinstance(path, bytes):
Jusr/1ib/python3.5/posixpath.py: Tine return '/
Jusr/1ib/python3.5/posixpath.py: return <= _get_sep:
Jusr/1ib/python3.5/posixpath.py: Tine path = 2
Jusr/1ib/python3.5/posixpath.py: Tine try:
Jusr/1ib/python3.5/posixpath.py: Tine if not p:
Jusr/1ib/python3.5/posixpath.py Tine for b in p:
Jusr/1ib/python3.5/posixpath.py Tine if b.startswith(sep
Jusr/1ib/python3.5/posixpath.py Tine elif not path or path.endswith(sep):
Jusr/1ib/python3.5/posixpath.py Tine path += sep + b
Jusr/1ib/python3.5/posixpath.py: Tine for b in p:
Jusr/1ib/python3.5/posixpath.py: Tine return path
Jusr/1ib/python3.5/posixpath.py: return <= join: 'a/b

'a/b'

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 Documentation

 		
 Overview

 		
 Custom actions

 		
 Tracing processes

 		
 Environment variable activation

 		
 Filtering DSL

 		
 Development

 		
 FAQ

 		
 Why not Smiley?

 		
 Why not pytrace?

 		
 Why (not) coverage?

 		
 Installation

 		
 Introduction

 		
 Installation

 		
 The trace function

 		
 The Q function

 		
 Composing

 		
 Operators

 		
 Activation

 		
 via code

 		
 via environment variable

 		
 Remote tracing

 		
 The CLI

 		
 Cookbook

 		
 Walkthrough

 		
 Packaging

 		
 Typical

 		
 Needle in the haystack

 		
 Stop after N calls

 		
 Reference

 		
 Functions

 		
 Predicates

 		
 Actions

 		
 Objects

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 2.2.1 (2019-01-19)

 		
 2.2.0 (2019-01-19)

 		
 2.1.0 (2018-11-17)

 		
 2.0.2 (2017-11-24)

 		
 2.0.1 (2017-09-09)

 		
 2.0.0 (2017-09-02)

 		
 1.4.1 (2016-09-24)

 		
 1.4.0 (2016-09-24)

 		
 1.3.0 (2016-04-14)

 		
 1.2.2 (2016-01-28)

 		
 1.2.1 (2016-01-27)

 		
 1.2.0 (2016-01-24)

 		
 1.1.0 (2016-01-21)

 		
 1.0.2 (2016-01-05)

 		
 1.0.1 (2015-12-24)

 		
 1.0.0 (2015-12-24)

 		
 0.6.0 (2015-10-10)

 		
 0.5.1 (2015-04-15)

 		
 0.5.0 (2015-04-06)

 		
 0.4.0 (2015-03-29)

 		
 0.3.1 (2015-03-29)

 		
 0.3.0 (2015-03-29)

 		
 0.2.1 (2015-03-28)

 		
 0.2.0 (2015-03-27)

 		
 0.1.0 (2015-03-22)

_images/tree-trace.png
>>> foo.func()
not shown in trace

/home/7onel/osp/python-hunter/foo.py:8 Tine print(mumbo
jumbo

/home/7onel/osp/python-hunter/foo.py:9 Tine mumbo = 2
2

/home/7onel/osp/python-hunter/foo.py:1 call def bar():

> /home/ionel/osp/python-hunter/foo.py(2)bar ()
> execution_will_get_stopped # cause we get a Pdb session here

(pdby I

_images/simple-trace.png
>>> os.path.join('a', 'b')

Jusr/1ib/python3.5/posixpath.py: call def join(a, *p):
Jusr/1ib/python3.5/posixpath.py line sep = _get_sep(a
Jusr/1ib/python3.5/posixpath.py: call def _get_sep(path):
Jusr/lib/python3.5/posixpath.py: line if isinstance(path, bytes):
/usr/1ib/python3.5/posixpath.py: Tine return '/
/usr/1ib/python3.5/posixpath.py: return return '/

. return value: '/'
Jusr/1ib/python3.5/posixpath.py: line path = a
/usr/1ib/python3.5/posixpath.py: Tine try:
/usr/1ib/python3.5/posixpath.py: Tine if not p:
/usr/1ib/python3.5/posixpath.py: Tine for b in p:
fusr/lib/python3.5/posixpath.py Line if b.startswith(sep):
Jusr/1ib/python3.5/posixpath.py line elif not path or path.endswith(sep):
Jusr/1ib/python3.5/posixpath.py line path += sep + b
/usr/1ib/python3.5/posixpath.py Tine for b in p:
Jusr/1ib/python3.5/posixpath.py: line return path
/usr/1ib/python3.5/posixpath.py: return return path

. return value: 'a/b'
'a/b'

_static/comment-bright.png

_images/vars-trace.png
>>> os.path.join('a', 'b')

Jusr/1ib/python3.5/posixpath.py:71 call def join(a, *p):
Jusr/1ib/python3.5/posixpath.py:76 line Sep = _get_sep(a

vars path => 'a'
Jusr/1ib/python3.5/posixpath.py:39 call def _get_sep(path):

vars path => 'a'
Jusr/1ib/python3.5/posixpath.py:40 line if isinstance(path, bytes):

vars path => 'a'
Jusr/1ib/python3.5/posixpath.py:43 Line return

vars path => 'a'
Jusr/1ib/python3.5/posixpath.py:43 return return

. return value: /'
Jusr/1ib/python3.5/posixpath.py:77 line path

vars path =>
Jusr/1ib/python3.5/posixpath.py:78 line try

vars path => 'a'
Jusr/1ib/python3.5/posixpath.py:79 line if not p

vars path => 'a'
Jusr/1ib/python3.5/posixpath.py:81 line for b in p

vars path => 'a'
Jusr/1ib/python3.5/posixpath.py:82 line if b.startswith(sep):

vars path
Jusr/1ib/python3.5/posixpath.py:84 line elif not path or path.endswith(sep):

vars path
Jusr/1ib/python3.5/posixpath.py:87 line path += sep + b

vars path => 'a/b'
Jusr/1ib/python3.5/posixpath.py:81 line for b in p

vars path => 'a/b'
Jusr/1ib/python3.5/posixpath.py:91 line return path

vars path => 'a/b'
Jusr/1ib/python3.5/posixpath.py:91 return return path

return value: 'a/b'
'a/b!

_static/ajax-loader.gif

_static/comment-close.png

