

Contents

	Overview
	Installation

	Documentation

	Getting started

	Development

	Design notes

	FAQ

	Projects using Hunter

	Installation

	Introduction
	Installation

	The trace function

	The Q function

	Composing

	Operators

	Activation

	Remote tracing
	The CLI

	Configuration

	Filtering

	Cookbook
	Walkthrough

	Packaging

	Typical

	Debugging a test

	Needle in the haystack

	Stop after N calls

	“Probe” - lightweight tracing

	Silenced exception runtime analysis

	Profiling

	Reference
	Helpers

	Actions

	Predicates

	Internals

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	3.6.1 (2023-04-26)

	3.6.0 (2023-04-25)

	3.5.1 (2022-09-27)

	3.5.0 (2022-09-11)

	3.4.3 (2021-12-15)

	3.4.2 (2021-12-15)

	3.4.1 (2021-12-14)

	3.4.0 (2021-12-14)

	3.3.8 (2021-06-23)

	3.3.7 (2021-06-23)

	3.3.6 (2021-06-23)

	3.3.5 (2021-06-11)

	3.3.3 (2021-05-04)

	3.3.2 (2021-03-25)

	3.3.1 (2020-10-24)

	3.3.0 (2020-10-23)

	3.2.2 (2020-09-04)

	3.2.1 (2020-08-18)

	3.2.0 (2020-08-16)

	3.1.3 (2020-02-02)

	3.1.2 (2019-01-19)

	3.1.1 (2019-01-19)

	3.1.0 (2019-01-19)

	3.0.5 (2019-12-06)

	3.0.4 (2019-10-26)

	3.0.3 (2019-10-13)

	3.0.2 (2019-10-10)

	3.0.1 (2019-06-17)

	3.0.0 (2019-06-17)

	2.2.1 (2019-01-19)

	2.2.0 (2019-01-19)

	2.1.0 (2018-11-17)

	2.0.2 (2017-11-24)

	2.0.1 (2017-09-09)

	2.0.0 (2017-09-02)

	1.4.1 (2016-09-24)

	1.4.0 (2016-09-24)

	1.3.0 (2016-04-14)

	1.2.2 (2016-01-28)

	1.2.1 (2016-01-27)

	1.2.0 (2016-01-24)

	1.1.0 (2016-01-21)

	1.0.2 (2016-01-05)

	1.0.1 (2015-12-24)

	1.0.0 (2015-12-24)

	0.6.0 (2015-10-10)

	0.5.1 (2015-04-15)

	0.5.0 (2015-04-06)

	0.4.0 (2015-03-29)

	0.3.1 (2015-03-29)

	0.3.0 (2015-03-29)

	0.2.1 (2015-03-28)

	0.2.0 (2015-03-27)

	0.1.0 (2015-03-22)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://python-hunter.readthedocs.io/]

	tests

	
[image: GitHub Actions Build Status] [https://github.com/ionelmc/python-hunter/actions]

[image: Coverage Status] [https://codecov.io/github/ionelmc/python-hunter]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/hunter] [image: PyPI Wheel] [https://pypi.org/project/hunter] [image: Supported versions] [https://pypi.org/project/hunter] [image: Supported implementations] [https://pypi.org/project/hunter]

[image: Commits since latest release] [https://github.com/ionelmc/python-hunter/compare/v3.6.1...master]

Hunter is a flexible code tracing toolkit, not for measuring coverage, but for debugging, logging, inspection and other
nefarious purposes. It has a simple Python API [https://python-hunter.readthedocs.io/en/latest/introduction.html],
a convenient terminal API and
a CLI tool to attach to processes.

	Free software: BSD 2-Clause License

Installation

pip install hunter

Documentation

https://python-hunter.readthedocs.io/

Getting started

Basic use involves passing various filters to the trace option. An example:

import hunter
hunter.trace(module='posixpath', action=hunter.CallPrinter)

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
 /usr/lib/python3.6/posixpath.py:75 call => join(a='a')
 /usr/lib/python3.6/posixpath.py:80 line a = os.fspath(a)
 /usr/lib/python3.6/posixpath.py:81 line sep = _get_sep(a)
 /usr/lib/python3.6/posixpath.py:41 call => _get_sep(path='a')
 /usr/lib/python3.6/posixpath.py:42 line if isinstance(path, bytes):
 /usr/lib/python3.6/posixpath.py:45 line return '/'
 /usr/lib/python3.6/posixpath.py:45 return <= _get_sep: '/'
 /usr/lib/python3.6/posixpath.py:82 line path = a
 /usr/lib/python3.6/posixpath.py:83 line try:
 /usr/lib/python3.6/posixpath.py:84 line if not p:
 /usr/lib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
 /usr/lib/python3.6/posixpath.py:87 line if b.startswith(sep):
 /usr/lib/python3.6/posixpath.py:89 line elif not path or path.endswith(sep):
 /usr/lib/python3.6/posixpath.py:92 line path += sep + b
 /usr/lib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
 /usr/lib/python3.6/posixpath.py:96 line return path
 /usr/lib/python3.6/posixpath.py:96 return <= join: 'a/b'
'a/b'

In a terminal it would look like:

[image: _images/code-trace.png]
Another useful scenario is to ignore all standard modules and force colors to make them stay even if the output is
redirected to a file.

import hunter
hunter.trace(stdlib=False, action=hunter.CallPrinter(force_colors=True))

Actions

Output format can be controlled with “actions”. There’s an alternative CodePrinter action that doesn’t handle
nesting (it was the default action until Hunter 2.0).

If filters match then action will be run. Example:

import hunter
hunter.trace(module='posixpath', action=hunter.CodePrinter)

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
 /usr/lib/python3.6/posixpath.py:75 call def join(a, *p):
 /usr/lib/python3.6/posixpath.py:80 line a = os.fspath(a)
 /usr/lib/python3.6/posixpath.py:81 line sep = _get_sep(a)
 /usr/lib/python3.6/posixpath.py:41 call def _get_sep(path):
 /usr/lib/python3.6/posixpath.py:42 line if isinstance(path, bytes):
 /usr/lib/python3.6/posixpath.py:45 line return '/'
 /usr/lib/python3.6/posixpath.py:45 return return '/'
 ... return value: '/'
 /usr/lib/python3.6/posixpath.py:82 line path = a
 /usr/lib/python3.6/posixpath.py:83 line try:
 /usr/lib/python3.6/posixpath.py:84 line if not p:
 /usr/lib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
 /usr/lib/python3.6/posixpath.py:87 line if b.startswith(sep):
 /usr/lib/python3.6/posixpath.py:89 line elif not path or path.endswith(sep):
 /usr/lib/python3.6/posixpath.py:92 line path += sep + b
 /usr/lib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
 /usr/lib/python3.6/posixpath.py:96 line return path
 /usr/lib/python3.6/posixpath.py:96 return return path
 ... return value: 'a/b'
'a/b'

	or in a terminal:

[image: _images/simple-trace.png]

Another useful action is the VarsPrinter:

import hunter
note that this kind of invocation will also use the default `CallPrinter` action
hunter.trace(hunter.Q(module='posixpath', action=hunter.VarsPrinter('path')))

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
 /usr/lib/python3.6/posixpath.py:75 call => join(a='a')
 /usr/lib/python3.6/posixpath.py:80 line a = os.fspath(a)
 /usr/lib/python3.6/posixpath.py:81 line sep = _get_sep(a)
 /usr/lib/python3.6/posixpath.py:41 call [path => 'a']
 /usr/lib/python3.6/posixpath.py:41 call => _get_sep(path='a')
 /usr/lib/python3.6/posixpath.py:42 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:42 line if isinstance(path, bytes):
 /usr/lib/python3.6/posixpath.py:45 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:45 line return '/'
 /usr/lib/python3.6/posixpath.py:45 return [path => 'a']
 /usr/lib/python3.6/posixpath.py:45 return <= _get_sep: '/'
 /usr/lib/python3.6/posixpath.py:82 line path = a
 /usr/lib/python3.6/posixpath.py:83 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:83 line try:
 /usr/lib/python3.6/posixpath.py:84 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:84 line if not p:
 /usr/lib/python3.6/posixpath.py:86 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
 /usr/lib/python3.6/posixpath.py:87 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:87 line if b.startswith(sep):
 /usr/lib/python3.6/posixpath.py:89 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:89 line elif not path or path.endswith(sep):
 /usr/lib/python3.6/posixpath.py:92 line [path => 'a']
 /usr/lib/python3.6/posixpath.py:92 line path += sep + b
 /usr/lib/python3.6/posixpath.py:86 line [path => 'a/b']
 /usr/lib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
 /usr/lib/python3.6/posixpath.py:96 line [path => 'a/b']
 /usr/lib/python3.6/posixpath.py:96 line return path
 /usr/lib/python3.6/posixpath.py:96 return [path => 'a/b']
 /usr/lib/python3.6/posixpath.py:96 return <= join: 'a/b'
'a/b'

In a terminal it would look like:

[image: _images/vars-trace.png]

You can give it a tree-like configuration where you can optionally configure specific actions for parts of the
tree (like dumping variables or a pdb set_trace):

from hunter import trace, Q, Debugger
from pdb import Pdb

trace(
 # drop into a Pdb session if ``foo.bar()`` is called
 Q(module="foo", function="bar", kind="call", action=Debugger(klass=Pdb))
 | # or
 Q(
 # show code that contains "mumbo.jumbo" on the current line
 lambda event: event.locals.get("mumbo") == "jumbo",
 # and it's not in Python's stdlib
 stdlib=False,
 # and it contains "mumbo" on the current line
 source__contains="mumbo"
)
)

import foo
foo.func()

With a foo.py like this:

def bar():
 execution_will_get_stopped # cause we get a Pdb session here

def func():
 mumbo = 1
 mumbo = "jumbo"
 print("not shown in trace")
 print(mumbo)
 mumbo = 2
 print(mumbo) # not shown in trace
 bar()

We get:

>>> foo.func()
not shown in trace
 /home/ionel/osp/python-hunter/foo.py:8 line print(mumbo)
jumbo
 /home/ionel/osp/python-hunter/foo.py:9 line mumbo = 2
2
 /home/ionel/osp/python-hunter/foo.py:1 call def bar():
> /home/ionel/osp/python-hunter/foo.py(2)bar()
-> execution_will_get_stopped # cause we get a Pdb session here
(Pdb)

In a terminal it would look like:

[image: _images/tree-trace.png]

Tracing processes

In similar fashion to strace Hunter can trace other processes, eg:

hunter-trace --gdb -p 123

If you wanna play it safe (no messy GDB) then add this in your code:

from hunter import remote
remote.install()

Then you can do:

hunter-trace -p 123

See docs on the remote feature [https://python-hunter.readthedocs.org/en/latest/remote.html].

Note: Windows ain’t supported.

Environment variable activation

For your convenience environment variable activation is available. Just run your app like this:

PYTHONHUNTER="module='os.path'" python yourapp.py

On Windows you’d do something like:

set PYTHONHUNTER=module='os.path'
python yourapp.py

The activation works with a clever .pth file that checks for that env var presence and before your app runs does something
like this:

from hunter import *
trace(<whatever-you-had-in-the-PYTHONHUNTER-env-var>)

Note that Hunter is activated even if the env var is empty, eg: PYTHONHUNTER="".

Environment variable configuration

Sometimes you always use the same options (like stdlib=False or force_colors=True). To save typing you can
set something like this in your environment:

PYTHONHUNTERCONFIG="stdlib=False,force_colors=True"

This is the same as PYTHONHUNTER="stdlib=False,action=CallPrinter(force_colors=True)".

Notes:

	Setting PYTHONHUNTERCONFIG alone doesn’t activate hunter.

	All the options for the builtin actions are supported.

	Although using predicates is supported it can be problematic. Example of setup that won’t trace anything:

PYTHONHUNTERCONFIG="Q(module_startswith='django')"
PYTHONHUNTER="Q(module_startswith='celery')"

which is the equivalent of:

PYTHONHUNTER="Q(module_startswith='django'),Q(module_startswith='celery')"

which is the equivalent of:

PYTHONHUNTER="Q(module_startswith='django')&Q(module_startswith='celery')"

Filtering DSL

Hunter supports a flexible query DSL, see the introduction [https://python-hunter.readthedocs.org/en/latest/introduction.html].

Development

To run the all tests run:

tox

Design notes

Hunter doesn’t do everything. As a design goal of this library some things are made intentionally austere and verbose (to avoid complexity,
confusion and inconsistency). This has few consequences:

	There are Operators [https://python-hunter.readthedocs.io/en/stable/introduction.html#operators] but there’s no negation operator.
Instead you’re expected to negate a Query object, eg: ~Q(module='re').

	There are no specialized operators or filters - all filters behave exactly the same. For example:

	No filter for packages. You’re expected to filter by module with an operator.

	No filter for arguments, return values or variables. You’re expected to write your own filter function and deal with the problems
of poking into objects.

	Layering is minimal. There’s are some helpers [https://python-hunter.readthedocs.io/en/stable/reference.html#helpers] that do
some argument processing and conversions to save you some typing but that’s about it.

	The library doesn’t try to hide the mechanics of tracing in Python - it’s 1:1 regarding what Python sends to a trace function if you’d be
using sys.settrace [https://docs.python.org/3/library/sys.html#sys.settrace].

	Doesn’t have any storage. You are expected to redirect output to a file.

You should look at it like it’s a tool to help you understand and debug big applications, or a framework ridding you of the boring parts of
settrace, not something that helps you learn Python.

FAQ

Why not Smiley?

There’s some obvious overlap with smiley [https://pypi.org/project/smiley/] but there are few fundamental differences:

	Complexity. Smiley is simply over-engineered:

	It uses IPC and a SQL database.

	It has a webserver. Lots of dependencies.

	It uses threads. Side-effects and subtle bugs are introduced in your code.

	It records everything. Tries to dump any variable. Often fails and stops working.

Why do you need all that just to debug some stuff in a terminal? Simply put, it’s a nice idea but the design choices work
against you when you’re already neck-deep into debugging your own code. In my experience Smiley has been very buggy and
unreliable. Your mileage may vary of course.

	Tracing long running code. This will make Smiley record lots of data, making it unusable.

Now because Smiley records everything, you’d think it’s better suited for short programs. But alas, if your program runs
quickly then it’s pointless to record the execution. You can just run it again.

It seems there’s only one situation where it’s reasonable to use Smiley: tracing io-bound apps remotely. Those apps don’t
execute lots of code, they just wait on network so Smiley’s storage won’t blow out of proportion and tracing overhead might
be acceptable.

	Use-cases. It seems to me Smiley’s purpose is not really debugging code, but more of a “non interactive monitoring” tool.

In contrast, Hunter is very simple:

	Few dependencies.

	Low overhead (tracing/filtering code has an optional Cython extension).

	No storage. This simplifies lots of things.

The only cost is that you might need to run the code multiple times to get the filtering/actions right. This means Hunter is
not really suited for “post-mortem” debugging. If you can’t reproduce the problem anymore then Hunter won’t be of much help.

Why not pytrace?

Pytrace [https://pypi.org/project/pytrace/] is another tracer tool. It seems quite similar to Smiley - it uses a sqlite
database for the events, threads and IPC, thus it’s reasonable to expect the same kind of problems.

Why not PySnooper or snoop?

snoop [https://pypi.org/project/snoop/] is a refined version of PySnooper [https://pypi.org/project/PySnooper/]. Both are
more suited to tracing small programs or functions as the output is more verbose and less suited to the needs of tracing a big application
where Hunter provides more flexible setup, filtering capabilities, speed and brevity.

Why not coverage?

For purposes of debugging coverage [https://pypi.org/project/coverage/] is a great tool but only as far as “debugging
by looking at what code is (not) run”. Checking branch coverage is good but it will only get you as far.

From the other perspective, you’d be wondering if you could use Hunter to measure coverage-like things. You could do it but
for that purpose Hunter is very “rough”: it has no builtin storage. You’d have to implement your own storage. You can do it
but it wouldn’t give you any advantage over making your own tracer if you don’t need to “pre-filter” whatever you’re
recording.

In other words, filtering events is the main selling point of Hunter - it’s fast (cython implementation) and the query API is
flexible enough.

Projects using Hunter

Noteworthy usages or Hunter (submit a PR with your project if you built a tool that relies on hunter):

	Crunch-io/diagnose [https://github.com/Crunch-io/diagnose] - a runtime instrumentation library.

	talwrii/huntrace [https://github.com/talwrii/huntrace] - an alternative cli (similar to ltrace).

	anki-code/xunter [https://github.com/anki-code/xunter] - a profiling tool made specifically for the xonsh shell [https://xon.sh].

More projects using it at https://github.com/ionelmc/python-hunter/network/dependents

Installation

At the command line:

pip install hunter

Introduction

Installation

To install hunter run:

pip install hunter

The trace function

The hunter.trace function can take 2 types of arguments:

	Keyword arguments like module, function or action (see hunter.Event for all the possible
filters).

	Callbacks that take an event argument:

	Builtin predicates like: hunter.predicates.Query, hunter.When, hunter.And or hunter.Or.

	Actions like: hunter.actions.CodePrinter, hunter.actions.Debugger or hunter.actions.VarsPrinter

	Any function. Or a disgusting lambda.

Note that hunter.trace will use hunter.Q when you pass multiple positional arguments or keyword arguments.

The Q function

The hunter.Q() function provides a convenience API for you:

	Q(module='foobar') is converted to Query(module='foobar').

	Q(module='foobar', action=Debugger) is converted to When(Query(module='foobar'), Debugger).

	Q(module='foobar', actions=[CodePrinter, VarsPrinter('name')]) is converted to
When(Query(module='foobar'), CodePrinter, VarsPrinter('name')).

	Q(Q(module='foo'), Q(module='bar')) is converted to And(Q(module='foo'), Q(module='bar')).

	Q(your_own_callback, module='foo') is converted to And(your_own_callback, Q(module='foo')).

Note that the default junction hunter.Q() uses is hunter.predicates.And.

Composing

All the builtin predicates (hunter.predicates.Query, hunter.predicates.When,
hunter.predicates.And, hunter.predicates.Not and hunter.predicates.Or) support
the |, & and ~ operators:

	Query(module='foo') | Query(module='bar') is converted to Or(Query(module='foo'), Query(module='bar'))

	Query(module='foo') & Query(module='bar') is converted to And(Query(module='foo'), Query(module='bar'))

	~Query(module='foo') is converted to Not(Query(module='foo'))

Operators

New in version 1.0.0: You can add startswith, endswith, in, contains, regex, lt, lte, gt, gte to your
keyword arguments, just like in Django. Double underscores are not necessary, but in case you got twitchy fingers
it’ll just work - filename__startswith is the same as filename_startswith.

New in version 2.0.0: You can also use these convenience aliases: sw (startswith), ew (endswith), rx (regex) and
has (contains).

Examples:

	Query(module_in=['re', 'sre', 'sre_parse']) will match events from any of those modules.

	~Query(module_in=['re', 'sre', 'sre_parse']) will match events from any modules except those.

	Query(module_startswith=['re', 'sre', 'sre_parse']) will match any events from modules that starts with either of
those. That means repr will match!

	Query(module_regex='(re|sre.*)$') will match any events from re or anything that starts with sre.

Note

If you want to filter out stdlib stuff you’re better off with using Query(stdlib=False).

Activation

You can activate Hunter in three ways.

from code

import hunter
hunter.trace(
 ...
)

with an environment variable

Set the PYTHONHUNTER environment variable. Eg:

PYTHONHUNTER="module='os.path'" python yourapp.py

On Windows you’d do something like:

set PYTHONHUNTER=module='os.path'
python yourapp.py

The activation works with a clever .pth file that checks for that env var presence and before your app runs does something like this:

from hunter import *
trace(
 <whatever-you-had-in-the-PYTHONHUNTER-env-var>
)

That also means that it will do activation even if the env var is empty, eg: PYTHONHUNTER="".

with a CLI tool

If you got an already running process you can attach to it with hunter-trace. See Remote tracing for details.

Remote tracing

Hunter supports tracing local processes, with two backends: manhole [https://pypi.org/project/manhole/] and GDB.
For now Windows isn’t supported.

Using GDB is risky (if anything goes wrong your process will probably be hosed up badly) so the Manhole backend is
recommended. To use it:

from hunter import remote
remote.install()

You should put this somewhere where it’s run early in your project (settings or package’s __init__.py file).

The remote.install() takes same arguments as manhole.install(). You’ll probably only want to use verbose=False …

The CLI

usage: hunter-trace [-h] -p PID [-t TIMEOUT] [--gdb] [-s SIGNAL]
 [OPTIONS [OPTIONS ...]]

	positional arguments:

	OPTIONS

	optional arguments:

	
	-h, --help

	show this help message and exit

	-p PID, --pid PID

	A numerical process id.

	-t TIMEOUT, --timeout TIMEOUT

	Timeout to use. Default: 1 seconds.

	--gdb

	Use GDB to activate tracing. WARNING: it may deadlock
the process!

	-s SIGNAL, --signal SIGNAL

	Send the given SIGNAL to the process before
connecting.

The OPTIONS are hunter.trace() arguments.

Configuration

Default predicates and action kwargs defaults can be configured via a PYTHONHUNTERCONFIG environment variable.

All the actions kwargs:

	klass

	stream

	force_colors

	force_pid

	filename_alignment

	thread_alignment

	pid_alignment

	repr_limit

	repr_func

Example:

PYTHONHUNTERCONFIG="stdlib=False,force_colors=True"

This is the same as PYTHONHUNTER="stdlib=False,action=CallPrinter(force_colors=True)".

Notes:

	Setting PYTHONHUNTERCONFIG alone doesn’t activate hunter.

	All the options for the builtin actions are supported.

	Although using predicates is supported it can be problematic. Example of setup that won’t trace anything:

PYTHONHUNTERCONFIG="Q(module_startswith='django')"
PYTHONHUNTER="Q(module_startswith='celery')"

which is the equivalent of:

PYTHONHUNTER="Q(module_startswith='django'),Q(module_startswith='celery')"

which is the equivalent of:

PYTHONHUNTER="Q(module_startswith='django')&Q(module_startswith='celery')"

Filtering

A list of all the keyword filters that hunter.trace or hunter.Q accept:

	arg - you probably don’t care about this - it may have a value for return/exception events

	builtin (bool) - True if function is a builtin function

	calls (int) - a call counter, you can use it to limit output by using a lt operator

	depth (int) - call depth, starts from 0, increases for call events and decreases for returns

	filename (str)

	fullsource (str) - sourcecode for the executed lines (may be multiple lines in some situations)

	function (str) - function name

	globals (dict) - global variables

	instruction (int or str, depending on Python version) - current executed bytecode,
see Silenced exception runtime analysis for example usage

	kind (str) - one of ‘call’, ‘exception’, ‘line’ or ‘return’

	lineno (int)

	locals (dict) - local variables

	module (str) - dotted module

	source (str) - sourcecode for the executed line

	stdlib (bool) - True if module is from stdlib

	threadid (int)

	threadname (str) - whatever threading.Thread.name [https://docs.python.org/3/library/threading.html#threading.Thread.name]
returns

You can append operators to the above filters. Note that some of of the filters won’t work well with the bool or int types.

	contains - works best with str, for
example module_contains='foobar' translates to 'foobar' in event.module

	has - alias for contains

	endswith - works best with str, for
example module_endswith='foobar' translates to event.module.endswith('foobar'). You can also pass in a iterable,
example module_endswith=('foo', 'bar') is acceptable [https://docs.python.org/3/library/stdtypes.html#str.startswith]

	ew - alias for endswith

	gt - works best with int, for example lineno_gt=100 translates to event.lineno > 100

	gte - works best with int, for example lineno_gte=100 translates to event.lineno >= 100

	in - a membership test, for example module_in=('foo', 'bar') translates to event.module in ('foo', 'bar'). You can use any
iterable, for example module_in='foo bar' translates to event.module in 'foo bar', and that would probably have the same result
as the first example

	lt - works best with int, for example calls_lt=100 translates to event.calls < 100

	lte - works best with int, for example depth_lte=100 translates to event.depth <= 100

	regex - works best with str, for
example module_regex=r'(test|test.*)\b' translates to re.match(r'(test|test.*)\b', event.module)

	rx - alias for regex

	startswith - works best with str, for
example module_startswith='foobar' translates to event.module.startswith('foobar'). You can also pass in a iterable,
example module_startswith=('foo', 'bar') is acceptable [https://docs.python.org/3/library/stdtypes.html#str.startswith]

	sw - alias for startswith

Notes:

	you can also use double underscore (if you’re too used to Django query lookups), eg: module__has='foobar' is acceptable

	there’s nothing smart going on for the dots in module names so sometimes you might need to account for said dots:

	module_sw='foo' will match "foo.bar" and "foobar" - if you want to avoid matchin the later you could do either of:

	Q(module='foo')|Q(module_sw='foo.')

	Q(module_rx=r'foo($|\.)') - but this might cost you in speed

	Q(filename_sw='/path/to/foo/') - probably the fastest

	Q(filename_has='/foo/') - avoids putting in the full path but might match unwanted paths

Cookbook

When in doubt, use Hunter.

Walkthrough

Sometimes you just want to get an overview of an unfamiliar application code, eg: only see calls/returns/exceptions.

In this situation, you could use something like
~Q(kind="line"),~Q(module_in=["six","pkg_resources"]),~Q(filename=""),stdlib=False. Lets break that down:

	~Q(kind="line") means skip line events (~ is a negation of the filter).

	stdlib=False means we don’t want to see anything from stdlib.

	~Q(module_in=["six","pkg_resources")] means we’re tired of seeing stuff from those modules in site-packages.

	~Q(filename="") is necessary for filtering out events that come from code without a source (like the interpreter
bootstrap stuff).

You would run the application (in Bash) like:

PYTHONHUNTER='~Q(kind="line"),~Q(module_in=["six","pkg_resources"]),~Q(filename=""),stdlib=False' myapp (or python myapp.py)

Additionally you can also add a depth filter (eg: depth_lt=10) to avoid too deep output.

Packaging

I frequently use Hunter to figure out how distutils/setuptools work. It’s very hard to figure out what’s going on by just
looking at the code - lots of stuff happens at runtime. If you ever tried to write a custom command you know what I mean.

To show everything that is being run:

PYTHONHUNTER='module_startswith=["setuptools", "distutils", "wheel"]' python setup.py bdist_wheel

If you want too see some interesting variables:

PYTHONHUNTER='module_startswith=["setuptools", "distutils", "wheel"], actions=[CodePrinter, VarsPrinter("self.bdist_dir")]' python setup.py bdist_wheel

Typical

Normally you’d only want to look at your code. For that purpose, there’s the stdlib option. Set it to False.

Building a bit on the previous example, if I have a build Distutils command and I only want to see my code then I’d run
this:

PYTHONHUNTER='stdlib=False' python setup.py build

But this also means I’d be seeing anything from site-packages. I could filter on only the events from the current
directory (assuming the filename is going to be a relative path):

PYTHONHUNTER='~Q(filename_startswith="/")' python setup.py build

Debugging a test

In tests it is convenient to ignore everything that is in stdlib and site-packages and start hunter right before
the tested function.

from hunter import trace, Q
trace(Q(stdlib=False), ~Q(filename_contains='site-packages'))

It also helps to save output into a file to compare different runs. An example below uses pytest with -k option
to select and tun a test or tests with string some in name. The output is then piped to testout1 file.

pytest test/test_simple.py -k some &> testout1

Needle in the haystack

If the needle might be though the stdlib then you got not choice. But some of the hay is very verbose and useless, like
stuff from the re module.

Note that there are few “hidden” modules like sre, sre_parse, sre_compile etc. You can filter that out with:

~Q(module_regex="(re|sre.*)$")

Although filtering out that regex stuff can cut down lots of useless output you usually still get lots of output.

Another way, if you got at least some vague idea of what might be going on is to “grep” for sourcecode. Example, to show all
the code that does something with a build_dir property:

source_contains=".build_dir"

You could even extend that a bit to dump some variables:

source_contains=".build_dir", actions=[CodePrinter, VarsPrinter("self.build_dir")]

Stop after N calls

Say you want to stop tracing after 1000 events, you’d do this:

~Q(calls_gt=1000, action=Stop)

Explanation:

Q(calls_gt=1000, action=Stop) will translate to When(Query(calls_gt=1000), Stop)

Q(calls_gt=1000) will return True when 1000 call count is hit.

When(something, Stop) will call Stop when something returns True. However it will also return the result of something - the net effect being nothing being shown up to 1000 calls. Clearly not what we want …

So then we invert the result, ~When(...) is the same as Not(When).

This may not seem intuitive but for now it makes internals simpler. If When would always return True then
Or(When, When) would never run the second When and we’d need to have all sorts of checks for this. This may
change in the future however.

“Probe” - lightweight tracing

Based on Robert Brewer’s FunctionProbe [https://github.com/ionelmc/python-hunter/issues/45#issuecomment-453754832]
example.

The use-case is that you’d like to trace a huge application and running a tracer (even a cython one) would have a too
great impact. To solve this you’d start the tracer only in placer where it’s actually needed.

To make this work you’d monkeypatch the function that needs the tracing. This example uses aspectlib [https://python-aspectlib.readthedocs.io/]:

def probe(qualname, *actions, **filters):
 def tracing_decorator(func):
 @functools.wraps(func)
 def tracing_wrapper(*args, **kwargs):
 # create the Tracer manually to avoid spending time in likely useless things like:
 # - loading PYTHONHUNTERCONFIG
 # - setting up the clear_env_var or thread_support options
 # - atexit cleanup registration
 with hunter.Tracer().trace(hunter.When(hunter.Query(**filters), *actions)):
 return func(*args, **kwargs)

 return tracing_wrapper

 aspectlib.weave(qualname, tracing_decorator) # this does the monkeypatch

Suggested use:

	to get the regular tracing for that function:

probe('module.func', hunter.VarsPrinter('var1', 'var2'))

	to log some variables at the end of the target function, and nothing deeper:

probe('module.func', hunter.VarsPrinter('var1', 'var2'), kind="return", depth=0)

Another interesting thing is that you may note that you can reduce the implementation of the probe function down to
just:

def probe(qualname, *actions, **kwargs):
 aspectlib.weave(qualname, functools.partial(hunter.wrap, actions=actions, **kwargs))

It will work the same, hunter.wrap being a decorator. However, while hunter.wrap offers the convenience
of tracing just inside the target function (eg: probe('module.func', local=True)) it will also add a lot of extra
filtering to trim irrelevant events from around the function (like return from tracer setup, and the internals of the
decorator), in addition to what hunter.trace() does. Not exactly lightweight…

Silenced exception runtime analysis

Finding code that discards exceptions is sometimes really hard.

Note

This was made available in hunter.actions.ErrorSnooper for convenience. This cookbook entry will remain for educational
purposes.

While this is easy to find with a grep "except:" -R .:

def silenced_easy():
 try:
 error()
 except:
 pass

Variants of this ain’t easy to grep:

def silenced_easy():
 try:
 error()
 except Exception:
 pass

If you can’t simply review all the sourcecode then runtime analysis is one way to tackle this:

class DumpExceptions(hunter.CodePrinter):
 events = ()
 depth = 0
 count = 0
 exc = None

 def __init__(self, max_count=10, **kwargs):
 self.max_count = max_count
 self.backlog = collections.deque(maxlen=5)
 super(DumpExceptions, self).__init__(**kwargs)

 def __call__(self, event):
 self.count += 1
 if event.kind == 'exception': # something interesting happened ;)
 self.events = list(self.backlog)
 self.events.append(event.detach(self.try_repr))
 self.exc = self.try_repr(event.arg[1])
 self.depth = event.depth
 self.count = 0
 elif self.events:
 if event.depth > self.depth: # too many details
 return
 elif event.depth < self.depth and event.kind == 'return': # stop if function returned
 op = event.instruction
 op = op if isinstance(op, int) else ord(op)
 if op == RETURN_VALUE:
 self.output("{BRIGHT}{fore(BLUE)}{} tracing {} on {}{RESET}\n",
 ">" * 46, event.function, self.exc)
 for event in self.events:
 super(DumpExceptions, self).__call__(event)
 if self.count > 10:
 self.output("{BRIGHT}{fore(BLACK)}{} too many lines{RESET}\n",
 "-" * 46)
 else:
 self.output("{BRIGHT}{fore(BLACK)}{} function exit{RESET}\n",
 "-" * 46)
 self.events = []
 self.exc = None
 elif self.count < self.max_count:
 self.events.append(event.detach(self.try_repr))
 else:
 self.backlog.append(event.detach(self.try_repr))

Take note about the use of detach() and output().

Profiling

Hunter can be used to implement profiling (measure function timings).

The most basic implementation that only measures timings looks like this:

from hunter.actions import Action
from hunter.actions import RETURN_VALUE

class ProfileAction(Action):
 def __init__(self):
 self.timings = {}

 def __call__(self, event):
 if event.kind == 'call':
 self.timings[id(event.frame)] = time()
 elif event.kind == 'return':
 start_time = self.timings.pop(id(event.frame), None)
 if start_time is None:
 return
 delta = time() - start_time
 print(f'{event.function} returned: {event.arg}. Duration: {delta:.4f}s\n')

If you don’t care about exceptions at all this will be fine, but then you might just as well use a real profiler.

When exceptions occur Python send this to the tracer:

	event.kind="exception", event.arg=(exc_value, exc_type, tb)

	event.kind="return", event.arg=None

Unfortunately Python emits the return event even if the exception wasn’t discarded so we need to do some extra checks around the last
bytecode instruction that run at the return event.

This means that we have to store the exception for a little while, and do the check at return:

from hunter.actions import Action
from hunter.actions import RETURN_VALUE

class ProfileAction(Action):
 def __init__(self):
 self.timings = {}

 def __call__(self, event):
 current_time = time()
 frame_id = id(event.frame)

 if event.kind == 'call':
 self.timings[frame_id] = current_time, None
 elif frame_id in self.timings:
 start_time, depth, exception = self.timings.pop(frame_id)

 if event.kind == 'exception':
 # store the exception
 # (there will be a followup 'return' event in which we deal with it)
 self.timings[frame_id] = start_time, event.arg
 elif event.kind == 'return':
 delta = current_time - start_time
 if event.instruction == RETURN_VALUE:
 # exception was discarded
 print(f'{event.function} returned: {event.arg}. Duration: {delta:.4f}s\n')
 else:
 print(f'{event.function} raised exception: {exception}. Duration: {delta:.4f}s\n')

If you try that example you may notice that it’s not completely equivalent to any of the profilers available out there: data for builtin
functions is missing.

Python does in fact have a profiling mode (eg: hunter.trace(profile=True) and that will make hunter use sys.setprofile instead
of sys.setrace. However there are some downsides with that API:

	exception data will be missing (most likely because profiling is designed for speed and tracebacks are costly to build)

	trace events for builtin functions do not have their own frame objects (so we need to cater for that)

Behold, a ProfileAction that works in any mode:

from hunter.actions import ColorStreamAction
from hunter.actions import RETURN_VALUE

class ProfileAction(ColorStreamAction):
 # using ColorStreamAction brings this more in line with the other actions
 # (stream option, coloring and such, see the other examples for colors)
 def __init__(self, **kwargs):
 self.timings = {}
 super(ProfileAction, self).__init__(**kwargs)

 def __call__(self, event):
 current_time = time()
 # include event.builtin in the id so we don't have problems
 # with Python reusing frame objects from the previous call for builtin calls
 frame_id = id(event.frame), str(event.builtin)

 if event.kind == 'call':
 self.timings[frame_id] = current_time, None
 elif frame_id in self.timings:
 start_time, exception = self.timings.pop(frame_id)

 # try to find a complete function name for display
 function_object = event.function_object
 if event.builtin:
 function = '<builtin>.{}'.format(event.arg.__name__)
 elif function_object:
 if hasattr(function_object, '__qualname__'):
 function = '{}.{}'.format(
 function_object.__module__, function_object.__qualname__
)
 else:
 function = '{}.{}'.format(
 function_object.__module__,
 function_object.__name__
)
 else:
 function = event.function

 if event.kind == 'exception':
 # store the exception
 # (there will be a followup 'return' event in which we deal with it)
 self.timings[frame_id] = start_time, event.arg
 elif event.kind == 'return':
 delta = current_time - start_time
 if event.instruction == RETURN_VALUE:
 # exception was discarded
 self.output(
 '{fore(BLUE)}{} returned: {}. Duration: {:.4f}s{RESET}\n',
 function, event.arg, delta
)
 else:
 self.output(
 '{fore(RED)}{} raised exception: {}. Duration: {:.4f}s{RESET}\n',
 function, exception, delta
)

Reference

Helpers

	hunter.trace(*predicates, **options)

	Starts tracing.

	hunter.stop()

	Stop tracing.

	hunter.wrap([function_to_trace])

	Functions decorated with this will be traced.

	hunter.And(*predicates, **kwargs)

	Helper that flattens out predicates in a single hunter.predicates.And object if possible.

	hunter.Backlog(*conditions, **kwargs)

	Helper that merges kwargs and conditions prior to creating the Backlog.

	hunter.From([condition, predicate, watermark])

	Helper that converts keyword arguments to From(condition=Q(**normal_kwargs), predicate=Q(**rel_kwargs) where rel_kwargs are all the kwargs that start with “depth” or “calls”.

	hunter.Not(*predicates, **kwargs)

	Helper that flattens out predicates in a single hunter.predicates.And object if possible.

	hunter.Or(*predicates, **kwargs)

	Helper that flattens out predicates in a single hunter.predicates.Or object if possible.

	hunter.Q(*predicates, **query)

	Helper that handles situations where hunter.predicates.Query objects (or other callables) are passed in as positional arguments - it conveniently converts those to a hunter.predicates.And predicate.

Actions

	hunter.actions.CallPrinter(*args, **kwargs)

	An action that just prints the code being executed, but unlike hunter.CodePrinter it indents based on callstack depth and it also shows repr() of function arguments.

	hunter.actions.CodePrinter([stream, …])

	An action that just prints the code being executed.

	hunter.actions.ColorStreamAction([stream, …])

	Baseclass for your custom action.

	hunter.actions.Debugger([klass])

	An action that starts pdb.

	hunter.actions.ErrorSnooper(*args, **kwargs)

	An action that prints events around silenced exceptions.

	hunter.actions.Manhole(**options)

	

	hunter.actions.StackPrinter([depth, limit])

	An action that prints a one-line stacktrace.

	hunter.actions.VarsPrinter(*names, **options)

	An action that prints local variables and optionally global variables visible from the current executing frame.

	hunter.actions.VarsSnooper(**options)

	A PySnooper-inspired action, similar to VarsPrinter, but only show variable changes.

Warning

The following (Predicates and Internals) have Cython implementations in modules prefixed with “_”.
They should be imported from the hunter module, not hunter.something to be sure you get the best available implementation.

Predicates

	hunter.predicates.And(*predicates)

	Logical conjunction.

	hunter.predicates.Backlog(condition[, size, …])

	Until-point buffering mechanism.

	hunter.predicates.From(condition[, …])

	From-point filtering mechanism.

	hunter.predicates.Not(predicate)

	Logical complement (negation).

	hunter.predicates.Or(*predicates)

	Logical disjunction.

	hunter.predicates.Query(**query)

	Event-filtering predicate.

	hunter.predicates.When(condition, *actions)

	Conditional predicate.

Internals

	hunter.event.Event(frame, kind, arg[, …])

	A wrapper object for Frame objects.

	hunter.tracer.Tracer([threading_support, …])

	Tracer object.

Helpers

	
hunter.trace(*predicates, clear_env_var=False, action=CodePrinter, actions=[], **kwargs)

	Starts tracing. Can be used as a context manager (with slightly incorrect semantics - it starts tracing
before __enter__ is called).

	Parameters

	*predicates (callables) – Runs actions if all of the given predicates match.

	Keyword Arguments

	
	clear_env_var – Disables tracing in subprocess. Default: False.

	threading_support – Enable tracing new threads. Default: None.

Modes:

	None - automatic (enabled but actions only prefix with thread name if more than 1 thread)

	False - completely disabled

	True - enabled (actions always prefix with thread name)

You can also use:
threads_support, thread_support, threadingsupport, threadssupport, threadsupport,
threading, threads or thread.

	action – Action to run if all the predicates return True. Default: CodePrinter.

	actions – Actions to run (in case you want more than 1).

	**kwargs – for convenience you can also pass anything that you’d pass to hunter.Q

See also

hunter.tracer.Tracer or hunter.event.Event

	
hunter.stop()

	Stop tracing. Restores previous tracer (if there was any).

	
hunter.wrap(function_to_trace=None, **trace_options)

	Functions decorated with this will be traced.

Use local=True to only trace local code, eg:

@hunter.wrap(local=True)
def my_function():
 ...

Keyword arguments are allowed, eg:

@hunter.wrap(action=hunter.CallPrinter)
def my_function():
 ...

Or, filters:

@hunter.wrap(module='foobar')
def my_function():
 ...

	
hunter.And(*predicates, **kwargs)

	Helper that flattens out predicates in a single hunter.predicates.And object if possible.
As a convenience it converts kwargs to a single hunter.predicates.Query instance.

	Parameters

	
	*predicates (callables) – Callables that returns True/False or hunter.predicates.Query objects.

	**kwargs – Arguments that may be passed to hunter.predicates.Query.

Returns: A hunter.predicates.And instance.

See also

hunter.predicates.And

	
hunter.Backlog(*conditions, **kwargs)

	Helper that merges kwargs and conditions prior to creating the Backlog.

	Parameters

	
	*conditions (callable) – Optional Query object or a callable that returns True/False.

	size (int) – Number of events that the backlog stores. Effectively this is the maxlen for the internal deque.

	stack (int) – Stack size to fill. Setting this to 0 disables creating fake call events.

	vars (bool) – Makes global/local variables available in the stored events.
This is an expensive option - it will use action.try_repr on all the variables.

	strip (bool) – If this option is set then the backlog will be cleared every time an event matching the condition is found.
Disabling this may show more context every time an event matching the condition is found but said context may also be
duplicated across multiple matches.

	action (ColorStreamAction) – A ColorStreamAction to display the stored events when an event matching the condition is found.

	filter (callable) – Optional Query object or a callable that returns True/False to filter the stored
events with.

	**kwargs – Arguments that are passed to hunter.Q(). Any kwarg that starts with “depth” or “calls” will be included predicate.

See also

hunter.predicates.Backlog

	
hunter.From(condition=None, predicate=None, watermark=0, **kwargs)

	Helper that converts keyword arguments to From(condition=Q(**normal_kwargs), predicate=Q(**rel_kwargs)
where rel_kwargs are all the kwargs that start with “depth” or “calls”.

	Parameters

	
	condition (callable) – A callable that returns True/False or a hunter.predicates.Query object.

	predicate (callable) – Optional callable that returns True/False or a hunter.predicates.Query object to
run after condition first returns True.

	**kwargs – Arguments that are passed to hunter.Q(). Any kwarg that starts with “depth” or “calls” will be included predicate.

Examples

From(function='foobar', depth_lt=5) coverts to From(Q(function='foobar'), Q(depth_lt=5)).
The depth filter is moved in the predicate because it would not have any effect as a condition - it stop being called after it
returns True, thus it doesn’t have the intended effect (a limit to how deep to trace from foobar).

See also

hunter.predicates.From

	
hunter.Not(*predicates, **kwargs)

	Helper that flattens out predicates in a single hunter.predicates.And object if possible.
As a convenience it converts kwargs to multiple hunter.predicates.Query instances.

	Parameters

	
	*predicates (callables) – Callables that returns True/False or hunter.predicates.Query objects.

	**kwargs – Arguments that may be passed to hunter.predicates.Query.

Returns: A hunter.predicates.Not instance (possibly containing a hunter.predicates.And instance).

See also

hunter.predicates.Not

	
hunter.Or(*predicates, **kwargs)

	Helper that flattens out predicates in a single hunter.predicates.Or object if possible.
As a convenience it converts kwargs to multiple hunter.predicates.Query instances.

	Parameters

	
	*predicates (callables) – Callables that returns True/False or hunter.predicates.Query objects.

	**kwargs – Arguments that may be passed to hunter.predicates.Query.

Returns: A hunter.predicates.Or instance.

See also

hunter.predicates.Or

	
hunter.Q(*predicates, **query)

	Helper that handles situations where hunter.predicates.Query objects (or other callables)
are passed in as positional arguments - it conveniently converts those to a
hunter.predicates.And predicate.

See also

hunter.predicates.Query

Actions

	
class hunter.actions.CallPrinter(stream=sys.stderr, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	An action that just prints the code being executed, but unlike hunter.CodePrinter it indents based on
callstack depth and it also shows repr() of function arguments.

	Parameters

	
	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	repr_func (string or callable) – Function to use instead of repr.
If string must be one of ‘repr’ or ‘safe_repr’. Default: 'safe_repr'.

New in version 1.2.0.

	
__call__(event)

	Handle event and print filename, line number and source code. If event.kind is a return or exception also
prints values.

	
__init__(*args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
class hunter.actions.CodePrinter(stream=sys.stderr, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	An action that just prints the code being executed.

	Parameters

	
	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	repr_func (string or callable) – Function to use instead of repr.
If string must be one of ‘repr’ or ‘safe_repr’. Default: 'safe_repr'.

	
__call__(event)

	Handle event and print filename, line number and source code. If event.kind is a return or exception also
prints values.

	
class hunter.actions.ColorStreamAction(stream=sys.stderr, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	Baseclass for your custom action. Just implement your own __call__.

	
__eq__(other)

	Return self==value.

	
__init__(stream=None, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	Initialize self. See help(type(self)) for accurate signature.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
filename_prefix(event=None)

	Get an aligned and trimmed filename prefix for the given event.

Returns: string

	
output(format_str, *args, **kwargs)

	Write format_str.format(*args, **ANSI_COLORS, **kwargs) to self.stream.

For ANSI coloring you can place these in the format_str:

	{BRIGHT}

	{DIM}

	{NORMAL}

	{RESET}

	{fore(BLACK)}

	{fore(RED)}

	{fore(GREEN)}

	{fore(YELLOW)}

	{fore(BLUE)}

	{fore(MAGENTA)}

	{fore(CYAN)}

	{fore(WHITE)}

	{fore(RESET)}

	{back(BLACK)}

	{back(RED)}

	{back(GREEN)}

	{back(YELLOW)}

	{back(BLUE)}

	{back(MAGENTA)}

	{back(CYAN)}

	{back(WHITE)}

	{back(RESET)}

	Parameters

	
	format_str – a PEP-3101 format string

	*args

	**kwargs

Returns: string

	
pid_prefix()

	Get an aligned and trimmed pid prefix.

	
thread_prefix(event)

	Get an aligned and trimmed thread prefix for the given event.

	
try_repr(obj)

	Safely call self.repr_func(obj). Failures will have special colored output and output is trimmed according
to self.repr_limit.

Returns: string

	
try_source(event, full=False)

	Get a failure-colorized source for the given event.

Return: string

	
try_str(obj)

	Safely call str(obj). Failures will have special colored output and output is trimmed according
to self.repr_limit.

Only used when dumping detached events.

Returns: string

	
class hunter.actions.Debugger(klass=pdb.Pdb, **kwargs)

	An action that starts pdb.

	
__call__(event)

	Runs a pdb.set_trace at the matching frame.

	
__eq__(other)

	Return self==value.

	
__init__(klass=<class 'pdb.Pdb'>, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
class hunter.actions.ErrorSnooper(max_events=50, max_depth=1, stream=sys.stderr, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	An action that prints events around silenced exceptions. Note that it inherits the output of CodePrinter so no
fancy call indentation.

Warning

Should be considered experimental. May show lots of false positives especially if you’re tracing lots of clumsy code like:

try:
 stuff = something[key]
except KeyError:
 stuff = "default"

	Parameters

	
	max_backlog (int) – Maximum number of events to record and display before the silenced exception is raised.
Set to 0 to disable and get a speed boost. Default: 10.

	max_events (int) – Maximum number of events to record and display for each detected silenced exception. Default: 50.

	max_depth (int) – Increase if you want to drill into subsequent calls after an exception is raised. If you increase this you might
want to also increase max_events since subsequent calls may have so many events you won’t get to see the return event.
Default: 0 (doesn’t drill into any calls).

	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	repr_func (string or callable) – Function to use instead of repr.
If string must be one of ‘repr’ or ‘safe_repr’. Default: 'safe_repr'.

New in version 3.1.0.

	
__call__(event)

	Handle event and print filename, line number and source code. If event.kind is a return or exception also
prints values.

	
__init__(*args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
class hunter.actions.Manhole(**options)

	
	
__call__(event)

	Call self as a function.

	
__eq__(other)

	Return self==value.

	
__init__(**options)

	Initialize self. See help(type(self)) for accurate signature.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
class hunter.actions.StackPrinter(depth=15, limit=2, stream=sys.stderr, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	An action that prints a one-line stacktrace.

	Parameters

	
	depth (int) – The maximum number of frames to show.

	limit (int) – The maximum number of components to show in path. Eg: limit=2 means it will show 1 parent: foo/bar.py.

	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	repr_func (string or callable) – Function to use instead of repr.
If string must be one of ‘repr’ or ‘safe_repr’. Default: 'safe_repr'.

	
__call__(event)

	Handle event and print the stack.

	
__init__(depth=15, limit=2, **options)

	Initialize self. See help(type(self)) for accurate signature.

	
class hunter.actions.VarsPrinter(name, [name, [name, [...,]]]stream=sys.stderr, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	An action that prints local variables and optionally global variables visible from the current executing frame.

	Parameters

	
	*names (strings) – Names to evaluate. Expressions can be used (will only try to evaluate if all the variables are
present on the frame.

	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	repr_func (string or callable) – Function to use instead of repr.
If string must be one of ‘repr’ or ‘safe_repr’. Default: 'safe_repr'.

	
__call__(event)

	Handle event and print the specified variables.

	
__init__(*names, **options)

	Initialize self. See help(type(self)) for accurate signature.

	
class hunter.actions.VarsSnooper(stream=sys.stderr, force_colors=False, force_pid=False, filename_alignment=40, thread_alignment=12, pid_alignment=9, repr_limit=1024, repr_func='safe_repr')

	A PySnooper-inspired action, similar to VarsPrinter, but only show variable changes.

Warning

Should be considered experimental. Use judiciously.

	It stores reprs for all seen variables, therefore it can use lots of memory.

	Will leak memory if you filter the return events (eg: ~Q(kind="return")).

	Not thoroughly tested. May misbehave on code with closures/nonlocal variables.

	Parameters

	
	stream (file-like) – Stream to write to. Default: sys.stderr.

	filename_alignment (int) – Default size for the filename column (files are right-aligned). Default: 40.

	force_colors (bool) – Force coloring. Default: False.

	repr_limit (bool) – Limit length of repr() output. Default: 512.

	repr_func (string or callable) – Function to use instead of repr.
If string must be one of ‘repr’ or ‘safe_repr’. Default: 'safe_repr'.

	
__call__(event)

	Handle event and print the specified variables.

	
__init__(**options)

	Initialize self. See help(type(self)) for accurate signature.

Predicates

Warning

These have Cython implementations in modules prefixed with “_”.

Note that:

	Every predicate except When has a helper importable directly from the
hunter package.

	Ideally you’d use the helpers instead of these to get the best available implementation, extra validation and
better argument handling.

	
class hunter.predicates.And(*predicates)

	Logical conjunction. Returns False at the first sub-predicate that returns False, otherwise returns True.

	
__and__(other)

	Convenience API so you can do And(...) & other. It converts that to And(..., other).

	
__call__(event)

	Handles the event.

	
__eq__(other)

	Return self==value.

	
__init__(*predicates)

	Initialize self. See help(type(self)) for accurate signature.

	
__invert__()

	Convenience API so you can do ~And(...). It converts that to Not(And(...)).

	
__or__(other)

	Convenience API so you can do And(...) | other. It converts that to Or(And(...), other).

	
__rand__(other)

	Convenience API so you can do other & And(...). It converts that to And(other, And(...)).

	
__repr__()

	Return repr(self).

	
__ror__(other)

	Convenience API so you can do other | And(...). It converts that to Or(other, And(...)).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
class hunter.predicates.Backlog(condition, size=100, stack=10, vars=False, strip=True, action=None, filter=None)

	Until-point buffering mechanism. It will buffer detached events up to the given size and display them
using the given action when condition returns True.

This is a complement to From - essentially working the other way. While From
shows events after something interesting occurred the Backlog will show events prior to something interesting occurring.

If the depth delta from the first event in the backlog and the event that matched the condition is less
than the given stack then it will create fake call events to be passed to the action before the events
from the backlog are passed in.

Using a filter or pre-filtering is recommended to reduce storage work and improve tracing speed. Pre-filtering means that you use
Backlog inside a When or :class:`~hunter.And - effectively reducing the number of Events that get to the Backlog.

	Parameters

	
	condition (callable) – Optional Query object or a callable that returns True/False.

	size (int) – Number of events that the backlog stores. Effectively this is the maxlen for the internal deque.

	stack (int) – Stack size to fill. Setting this to 0 disables creating fake call events.

	vars (bool) – Makes global/local variables available in the stored events.
This is an expensive option - it will use action.try_repr on all the variables.

	strip (bool) – If this option is set then the backlog will be cleared every time an event matching the condition is found.
Disabling this may show more context every time an event matching the condition is found but said context may also be
duplicated across multiple matches.

	action (ColorStreamAction) – A ColorStreamAction to display the stored events when an event matching the condition is found.

	filter (callable) – Optional Query object or a callable that returns True/False to filter the stored
events with.

See also

hunter.predicates.From

	
__and__(other)

	Convenience API so you can do Backlog(...) & other. It converts that to And(Backlog(...), other)).

	
__call__(event)

	Handles the event.

	
__eq__(other)

	Return self==value.

	
__init__(condition, size=100, stack=10, vars=False, strip=True, action=None, filter=None)

	Initialize self. See help(type(self)) for accurate signature.

	
__invert__()

	Convenience API so you can do ~Backlog(...). It converts that to Not(Backlog(...)).

	
__or__(other)

	Convenience API so you can do Backlog(...) | other. It converts that to Or(Backlog(...), other).

	
__rand__(other)

	Convenience API so you can do other & Backlog(...). It converts that to And(other, Backlog(...)).

	
__repr__()

	Return repr(self).

	
__ror__(other)

	Convenience API so you can do other | Backlog(...). It converts that to Or(other, Backlog(...)).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
filter(*predicates, **kwargs)

	Returns another Backlog instance with extra output filtering. If the current instance already
have filters they will be merged by using an And predicate.

	Parameters

	
	*predicates (callables) – Callables that returns True/False or Query objects.

	**kwargs – Arguments that may be passed to Query.

Returns: A new Backlog instance.

	
class hunter.predicates.From(condition, predicate=None, watermark=0)

	From-point filtering mechanism. Switches on to running the predicate after condition matches, and switches off when
the depth goes lower than the initial level.

After condition(event) returns True the event.depth will be saved and calling this object with an
event will return predicate(event) until event.depth - watermark is equal to the depth that was saved.

	Parameters

	
	condition (callable) – Optional Query object or a callable that returns True/False.

	predicate (callable) – Optional Query object or a callable that returns True/False to
run after condition first returns True. Note that this predicate will be called with a event-copy that has adjusted
depth and calls to the initial point where the condition matched.
In other words they will be relative.

	watermark (int) – Depth difference to switch off and wait again on condition.

See also

hunter.predicates.Backlog

	
__and__(other)

	Convenience API so you can do From(...) & other. It converts that to And(From(...), other)).

	
__call__(event)

	Handles the event.

	
__eq__(other)

	Return self==value.

	
__init__(condition, predicate=None, watermark=0)

	Initialize self. See help(type(self)) for accurate signature.

	
__invert__()

	Convenience API so you can do ~From(...). It converts that to Not(From(...)).

	
__or__(other)

	Convenience API so you can do From(...) | other. It converts that to Or(From(...), other).

	
__rand__(other)

	Convenience API so you can do other & From(...). It converts that to And(other, From(...)).

	
__repr__()

	Return repr(self).

	
__ror__(other)

	Convenience API so you can do other | From(...). It converts that to Or(other, From(...)).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
class hunter.predicates.Not(predicate)

	Logical complement (negation). Simply returns not predicate(event).

	
__and__(other)

	Convenience API so you can do Not(...) & other. It converts that to And(Not(...), other).

Note that Not(...) & Not(...) converts to Not(Or(..., ...)).

	
__call__(event)

	Handles the event.

	
__eq__(other)

	Return self==value.

	
__init__(predicate)

	Initialize self. See help(type(self)) for accurate signature.

	
__invert__()

	Convenience API so you can do ~Not(...). It converts that to

	
__or__(other)

	Convenience API so you can do Not(...) | other. It converts that to Or(Not(...), other).

Note that Not(...) | Not(...) converts to Not(And(..., ...)).

	
__rand__(other)

	Convenience API so you can do other & Not(...). It converts that to And(other, Not(...)).

	
__repr__()

	Return repr(self).

	
__ror__(other)

	Convenience API so you can do other | Not(...). It converts that to Or(other, Not(...)).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
class hunter.predicates.Or(*predicates)

	Logical disjunction. Returns True after the first sub-predicate that returns True.

	
__and__(other)

	Convenience API so you can do Or(...) & other. It converts that to And(Or(...), other).

	
__call__(event)

	Handles the event.

	
__eq__(other)

	Return self==value.

	
__init__(*predicates)

	Initialize self. See help(type(self)) for accurate signature.

	
__invert__()

	Convenience API so you can do ~Or(...). It converts that to Not(Or(...)).

	
__or__(other)

	Convenience API so you can do Or(...) | other. It converts that to Or(..., other).

	
__rand__(other)

	Convenience API so you can do other & Or(...). It converts that to And(other, Or(...)).

	
__repr__()

	Return repr(self).

	
__ror__(other)

	Convenience API so you can do other | Or(...). It converts that to Or(other, Or(...)).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
class hunter.predicates.Query(**query)

	Event-filtering predicate.

See hunter.event.Event for details about the fields that can be filtered on.

	Parameters

	query – criteria to match on.

Accepted arguments:
arg,
builtin,
calls,
code,
depth,
filename,
frame,
fullsource,
function,
globals,
kind,
lineno,
locals,
module,
source,
stdlib,
threadid,
threadname.

	
__and__(other)

	Convenience API so you can do Query(...) & Query(...). It converts that to And(Query(...), Query(...)).

	
__call__(event)

	Handles event. Returns True if all criteria matched.

	
__eq__(other)

	Return self==value.

	
__init__(**query)

	Initialize self. See help(type(self)) for accurate signature.

	
__invert__()

	Convenience API so you can do ~Query(...). It converts that to Not(Query(...)).

	
__or__(other)

	Convenience API so you can do Query(...) | Query(...). It converts that to Or(Query(...), Query(...)).

	
__rand__(other)

	Convenience API so you can do other & Query(...). It converts that to And(other, Query(...)).

	
__repr__()

	Return repr(self).

	
__ror__(other)

	Convenience API so you can do other | Query(...). It converts that to Or(other, Query(...)).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
class hunter.predicates.When(condition, *actions)

	Conditional predicate. Runs actions when condition(event) is True.

Actions take a single event argument.

	
__and__(other)

	Convenience API so you can do When(...) & other. It converts that to And(When(...), other).

	
__call__(event)

	Handles the event.

	
__eq__(other)

	Return self==value.

	
__init__(condition, *actions)

	Initialize self. See help(type(self)) for accurate signature.

	
__invert__()

	Convenience API so you can do ~When(...). It converts that to Not(When(...)).

	
__or__(other)

	Convenience API so you can do When(...) | other. It converts that to Or(When(...), other).

	
__rand__(other)

	Convenience API so you can do other & When(...). It converts that to And(other, When(...)).

	
__repr__()

	Return repr(self).

	
__ror__(other)

	Convenience API so you can do other | When(...). It converts that to Or(other, When(...)).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

Internals

Warning

These have Cython implementations in modules prefixed with “_”.
They should be imported from the hunter module, not hunter.something to be sure you get the best available implementation.

Normally these are not used directly. Perhaps just the Tracer may be used directly for
performance reasons.

	
class hunter.event.Event(frame, kind, arg, tracer=None, depth=None, calls=None, threading_support=?)

	A wrapper object for Frame objects. Instances of this are passed to your custom functions or predicates.

Provides few convenience properties.

	Parameters

	
	frame (Frame) – A python Frame [https://docs.python.org/3/reference/datamodel.html#frame-objects] object.

	kind (str) – A string like 'call', 'line', 'return' or 'exception'.

	arg – A value that depends on kind. Usually is None but for 'return' or 'exception' other values
may be expected.

	tracer (hunter.tracer.Tracer) – The Tracer instance that created the event.
Needed for the calls and depth fields.

	
__eq__(other)

	Return self==value.

	
__getitem__

	Return getattr(self, name).

	
__init__(frame, kind, arg, tracer=None, depth=None, calls=None, threading_support=?)

	Initialize self. See help(type(self)) for accurate signature.

	
__reduce__()

	Helper for pickle.

	
__repr__()

	Return repr(self).

	
__weakref__

	list of weak references to the object (if defined)

	
arg = None

	A value that depends on kind

	
builtin = None

	If kind of the event is one of 'c_call', 'c_return', or 'c_exception' then this will be True.

	Type

	bool

	
calls = None

	A counter for total number of calls up to this Event.

	Type

	int

	
code

	A code object (not a string).

	
depth = None

	Tracing depth (increases on calls, decreases on returns).

	Type

	int

	
detach(value_filter=None)

	Return a copy of the event with references to live objects (like the frame) removed. You should use this if you
want to store or use the event outside the handler.

You should use this if you want to avoid memory leaks or side-effects when storing the events.

	Parameters

	value_filter – Optional callable that takes one argument: value.

If not specified then the arg, globals and locals fields will be None.

Example usage in a ColorStreamAction subclass:

def __call__(self, event):
 self.events = [event.detach(lambda field, value: self.try_repr(value))]

	
detached = None

	Flag that is True if the event was created with detach().

	Type

	bool

	
filename

	A string with the path to the module’s file. May be empty if __file__ attribute is missing.
May be relative if running scripts.

	Type

	str

	
frame = None

	The original Frame object.

Note

Not allowed in the builtin predicates (it’s the actual Frame object).
You may access it from your custom predicate though.

	
fullsource

	A string with the sourcecode for the current statement (from linecache - failures are ignored).

May include multiple lines if it’s a class/function definition (will include decorators).

	Type

	str

	
function

	A string with function name.

	Type

	str

	
function_object

	The function instance.

Warning

Use with prudence.

	Will be None for decorated functions on Python 2 (methods may still work tho).

	May be None if tracing functions or classes not defined at module level.

	May be very slow if tracing modules with lots of variables.

	Type

	function or None

	
globals

	A dict with global variables.

	Type

	dict

	
instruction

	Last byte instruction. If no bytecode was used (Cython code) then it returns None.
Depending on Python version it might be an int or a single char string.

	Type

	int or single char string or None

	
kind = None

	The kind of the event, could be one of 'call', 'line', 'return', 'exception'.

	Type

	str

	
lineno

	An integer with line number in file.

	Type

	int

	
locals

	A dict with local variables.

	Type

	dict

	
module

	A string with module name (like 'foo.bar').

	Type

	str

	
source

	A string with the sourcecode for the current line (from linecache - failures are ignored).

Fast but sometimes incomplete.

	Type

	str

	
stdlib

	A boolean flag. True if frame is in stdlib.

	Type

	bool

	
threadid

	Current thread ident. If current thread is main thread then it returns None.

	Type

	int or None

	
threading_support = None

	A copy of the hunter.tracer.Tracer.threading_support flag.

Note

Not allowed in the builtin predicates. You may access it from your custom predicate though.

	Type

	bool or None

	
threadname

	Current thread name.

	Type

	str

	
class hunter.tracer.Tracer(threading_support=None, profiling_mode=False)

	Tracer object.

	Parameters

	threading_support (bool) – Hooks the tracer into threading.settrace as well if True.

	
__call__(frame, kind, arg)

	The settrace function.

Note

This always returns self (drills down) - as opposed to only drilling down when predicate(event) is True
because it might match further inside.

	
__enter__()

	Does nothing. Users are expected to call trace().

Returns: self

	
__exit__(exc_type, exc_val, exc_tb)

	Wrapper around stop(). Does nothing with the arguments.

	
__init__(threading_support=None, profiling_mode=False)

	Initialize self. See help(type(self)) for accurate signature.

	
__repr__()

	Return repr(self).

	
__weakref__

	list of weak references to the object (if defined)

	
calls = None

	A counter for total number of ‘call’ frames that this Tracer went through.

	Type

	int

	
depth = None

	Tracing depth (increases on calls, decreases on returns)

	Type

	int

	
handler

	The current predicate. Set via hunter.Tracer.trace().

	
previous

	The previous tracer, if any (whatever sys.gettrace() returned prior to hunter.Tracer.trace()).

	
profiling_mode = None

	True if profiling mode was enabled. Should be considered read-only.

	Type

	bool

	
stop()

	Stop tracing. Reinstalls the previous tracer.

	
threading_support = None

	True if threading support was enabled. Should be considered read-only.

	Type

	bool

	
trace(predicate)

	Starts tracing with the given callable.

	Parameters

	predicate (callable that accepts a single Event argument)

	Returns

	self

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/ionelmc/python-hunter/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Hunter could always use more documentation, whether as part of the
official Hunter docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/ionelmc/python-hunter/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-hunter for local development:

	Fork python-hunter [https://github.com/ionelmc/python-hunter]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/python-hunter.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox).

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel:

tox -p auto

Authors

	Ionel Cristian Mărieș - https://blog.ionelmc.ro

	Claudiu Popa - https://github.com/PCManticore

	Mikhail Borisov - https://github.com/borman

	Dan Ailenei - https://github.com/Dan-Ailenei

	Tom Schraitle - https://github.com/tomschr

Changelog

3.6.1 (2023-04-26)

	Added safe repr support for Decimal objects.

3.6.0 (2023-04-25)

	Added C extension support for Python 3.11. This may come with up to 10% performance hit (depending on use-case) for all Pythons.
Unfortunately some compat shims [https://raw.githubusercontent.com/python/pythoncapi_compat/master/pythoncapi_compat.h] are
now used for getting frame details. This is necessary to be able to work with Python 3.11 and be more future-proof.

	Added safe repr support for ZoneInfo objects.

	C extension files are now prebuilt with Cython 3.0b2.

	Replaced the flake8/isort pre-commit hooks with ruff.

	Disabled editable wheels (PEP-0662 [https://peps.python.org/pep-0662/]) as they don’t include the hunter.pth file.
There may be a way to do it but I haven’t figured out a way to customize the editable_wheel command without a
very brittle solution glued to setuptools’ internals.

3.5.1 (2022-09-27)

	Fixed breakage in hunter-trace when Ctrl-C.

3.5.0 (2022-09-11)

	Add support for generators and coroutines in the hunter.wrap decorator.

	Dropped support for Python 3.6.

3.4.3 (2021-12-15)

	Removed most of the Python 2 support code.

	Fix some refactoring regression in setup.py and make the 3.4.x series installable only on Python 3.6 and later.

	Yank 3.4.0, 3.4.1, 3.4.2 releases to avoid install problems on Python 2.7.

3.4.2 (2021-12-15)

	Fixed CI to properly make win32 wheels.

3.4.1 (2021-12-14)

	Add support for building a pp37.pp38 tagged wheel
(basically an universal wheel installable just for those two PyPy versions).

3.4.0 (2021-12-14)

	Switched CI to GitHub Actions, this has a couple consequences:

	Support for Python 2.7 is dropped. You can still install it there but it’s not tested anymore and
Python 2 specific handling will be removed at some point.

	Linux wheels are now provided in musllinux and manylinux2014 variants.

	Extension building is now completely skipped on PyPy.

	A pure but tagged as platform specific wheel is now provided for PyPy (to have fast installs there as well).

3.3.8 (2021-06-23)

	Fixed CI problem that publishes same type of wheels two times.

3.3.7 (2021-06-23)

	Fixed a bug with how stdlib is detected on Windows (at least).

3.3.6 (2021-06-23)

	Fixed regression from 3.3.4: stdlib filter was broken.

	Improved the pth file (PYTHONHUNTER environment variable activation) to use a clean eval environment.
No bogus variables like line (from the site.py machinery) will be available anymore.

	Fixed a bug in VarsSnooper that would make it fail in rare situation where a double return event is emitted.

3.3.5 (2021-06-11)

	Added support for Python 3.10.

	Added support for time objects and the fold option in safe_repr.

	3.3.4 was skipped cause I messed up the CI.

3.3.3 (2021-05-04)

	Fixed tracer still being active for other threads after it was stopped.

Python unfortunately only allows removing the trace function for the current thread -
now Tracer will uninstall itself if it’s marked as stopped.

This fixes bogus errors that appear when using ipdb with
the hunter.actions.Debugger action while thread support is enabled (the default).

3.3.2 (2021-03-25)

	Changed CI to build Python 3.9 wheels. Python 3.5 no longer tested and wheels no longer built to keep things simple.

	Documentation improvements.

3.3.1 (2020-10-24)

	Fixed CI/test issues that prevented all of 21 wheels being published.

3.3.0 (2020-10-23)

	Fixed handling so that hunter.event.Event.module is always the "?" string instead of None.
Previously it was None when tracing particularly broken code and broke various predicates.

	Similarly hunter.event.Event.filename is now "?" if there’s no filename available.

	Building on the previous changes the actions have simpler code for displaying missing module/filenames.

	Changed hunter.actions.CallPrinter so that trace events for builtin functions are displayed differently.
These events appear when using profile mode (eg: trace(profile=True)).

	Fixed failure that could occur if hunter.event.Event.module is an unicode string. Now it’s always a regular string.
Only applies to Python 2.

	Fixed argument display when tracing functions with tuple arguments.
Closes #88 [https://github.com/ionelmc/python-hunter/issues/88]. Only applies to Python 2.

	Improved error reporting when internal failures occur. Now some details about the triggering event are logged.

3.2.2 (2020-09-04)

	Fixed oversight over what value is in hunter.event.Event.builtin. Now it’s always a boolean, and can be used consistently
in filters (eg: builtin=True,function='getattr').

3.2.1 (2020-08-18)

	Added support for regex, date and datetime in safe_repr.

	Fixed call argument display when positional and keyword arguments are used in hunter.actions.CallPrinter.

3.2.0 (2020-08-16)

	Implemented the StackPrinter action.

	Implemented the Backlog predicate.
Contributed by Dan Ailenei in #81 [https://github.com/ionelmc/python-hunter/pull/81].

	Improved contributing section in docs a bit.
Contributed by Tom Schraitle in #85 [https://github.com/ionelmc/python-hunter/pull/85].

	Improved filtering performance by avoiding a lot of unnecessary
PyObject_GetAttr calls in the Cython implementation of Backlog.

	Implemented the ErrorSnooper action.

	Added support for profiling mode (eg: trace(profile=True)).
This mode will use setprofile instead of settrace.

	Added ARM64 wheels and CI.

	Added hunter.event.Event.instruction and hunter.event.Event.builtin (usable in profile mode).

	Added more cookbook entries.

3.1.3 (2020-02-02)

	Improved again the stdlib check to handle certain paths better.

3.1.2 (2019-01-19)

	Really fixed the <frozen importlib.something stdlib check.

3.1.1 (2019-01-19)

	Marked all the <frozen importlib.something files as part of stdlib.

3.1.0 (2019-01-19)

	Added ErrorSnooper - an action that detects silenced exceptions.

	Added load_config() and fixed issues with configuration being loaded too late from the PYTHONHUNTERCONFIG environment
variable.

	Changed From() helper to automatically move depth and calls filters to the predicate (so they filter after
From activates).

	Changed From to pass a copy of event to the predicate.
The copy will have the depth and calls attributes adjusted to the point where From activated.

	Fixed a bunch of inconsistencies and bugs when using & and | operators with predicates.

	Fixed a bunch of broken fields on detached events
(function_object and arg).

	Improved docstrings in various and added a configuration doc section.

	Improved testing (more coverage).

3.0.5 (2019-12-06)

	Really fixed safe_repr so it doesn’t cause side-effects (now isinstance/issubclass are avoided - they
can cause side-effects in code that abuses descriptors in special attributes/methods).

3.0.4 (2019-10-26)

	Really fixed stream setup in actions (using force_colors without any stream was broken).
See: ColorStreamAction.

	Fixed __repr__ for the From predicate to include watermark.

	Added binary wheels for Python 3.8.

3.0.3 (2019-10-13)

	Fixed safe_repr on pypy so it’s safer on method objects.
See: ColorStreamAction.

3.0.2 (2019-10-10)

	Fixed setting stream from PYTHONHUNTERCONFIG environment variable.
See: ColorStreamAction.

	Fixed a couple minor documentation issues.

3.0.1 (2019-06-17)

	Fixed issue with coloring missing source message (coloring leaked into next line).

3.0.0 (2019-06-17)

	The package now uses setuptools-scm for development builds (available at https://test.pypi.org/project/hunter/). As a
consequence installing the sdist will download setuptools-scm.

	Recompiled cython modules with latest Cython. Hunter can be installed without any Cython, as before.

	Refactored some of the cython modules to have more typing information and not use deprecated property syntax.

	Replaced unsafe_repr option with repr_func. Now you can use your custom repr function in the builtin actions.
BACKWARDS INCOMPATIBLE

	Fixed buggy filename handling when using Hunter in ipython/jupyter. Source code should be properly displayed now.

	Removed globals option from VarsPrinter action. Globals are now always looked up. BACKWARDS INCOMPATIBLE

	Added support for locals in VarsPrinter action. Now you can do VarsPrinter('len(foobar)').

	Always pass module_globals dict to linecache methods. Source code from PEP-302 loaders is now printed properly.
Contributed by Mikhail Borisov in #65 [https://github.com/ionelmc/python-hunter/pull/65].

	Various code cleanup, style and docstring fixing.

	Added hunter.From() helper to allow passing in filters directly as keyword arguments.

	Added hunter.event.Event.detach() for storing events without leaks or side-effects (due to prolonged references
to Frame objects, local or global variables).

	Refactored the internals of actions for easier subclassing.

Added the
filename_prefix(),
output(),
pid_prefix(),
thread_prefix(),
try_repr() and
try_source() methods
to the hunter.actions.ColorStreamAction baseclass.

	Added hunter.actions.VarsSnooper - a PySnooper-inspired variant of VarsPrinter. It
will record and show variable changes, with the risk of leaking or using too much memory of course :)

	Fixed tracers to log error and automatically stop if there’s an internal failure. Previously error may have been
silently dropped in some situations.

2.2.1 (2019-01-19)

	Fixed a link in changelog.

	Fixed some issues in the Travis configuration.

2.2.0 (2019-01-19)

	Added hunter.predicates.From predicate for tracing from a specific point. It stop after returning back to the
same call depth with a configurable offset.

	Fixed PYTHONHUNTERCONFIG not working in some situations (config values were resolved at the wrong time).

	Made tests in CI test the wheel that will eventually be published to PyPI
(tox-wheel [https://pypi.org/project/tox-wheel/]).

	Made event.stdlib more reliable: pkg_resources is considered part of stdlib and few more paths will be
considered as stdlib.

	Dumbed down the get_peercred check that is done when attaching with hunter-trace CLI (via
hunter.remote.install()). It will be slightly insecure but will work on OSX.

	Added OSX in the Travis test grid.

2.1.0 (2018-11-17)

	Made threading_support on by default but output automatic (also, now 1 or 0 allowed).

	Added pid_alignment and force_pid action options to show a pid prefix.

	Fixed some bugs around __eq__ in various classes.

	Dropped Python 3.3 support.

	Dropped dependency on fields [https://python-fields.readthedocs.io/en/stable/].

	Actions now repr using a simplified implementation that tries to avoid calling __repr__ on user classes in order
to avoid creating side-effects while tracing.

	Added support for the PYTHONHUNTERCONFIG environment variable (stores defaults and doesn’t activate hunter).

2.0.2 (2017-11-24)

	Fixed indentation in hunter.actions.CallPrinter action (shouldn’t deindent on exception).

	Fixed option filtering in Cython Query implementation (filtering on tracer was allowed by mistake).

	Various fixes to docstrings and docs.

2.0.1 (2017-09-09)

	Now Py_AddPendingCall is used instead of acquiring the GIL (when using GDB).

2.0.0 (2017-09-02)

	Added the hunter.event.Event.count and hunter.event.Event.calls attributes.

	Added the lt/lte/gt/gte lookups.

	Added convenience aliases for startswith (sw), endswith (ew), contains (has)
and regex (rx).

	Added a convenience hunter.wrap() decorator to start tracing around a function.

	Added support for remote tracing (with two backends: manhole [https://pypi.org/project/manhole/] and GDB) via
the hunter-trace bin. Note: Windows is NOT SUPPORTED.

	Changed the default action to hunter.actions.CallPrinter.
You’ll need to use action=CodePrinter if you want the old output.

1.4.1 (2016-09-24)

	Fix support for getting sources for Cython module (it was broken on Windows and Python3.5+).

1.4.0 (2016-09-24)

	Added support for tracing Cython modules (#30 [https://github.com/ionelmc/python-hunter/issues/30]). A
cython: linetrace=True stanza or equivalent is required in Cython modules for this to work.

1.3.0 (2016-04-14)

	Added hunter.event.Event.thread.

	Added hunter.event.Event.threadid and hunter.event.Event.threadname
(available for filtering with hunter.Q()).

	Added hunter.event.Event.threading_support argument to hunter.trace().
It makes new threads be traced and changes action output to include thread name.

	Added support for using pdb++ [https://pypi.org/project/pdbpp/] in the hunter.actions.Debugger action.

	Added support for using manhole [https://pypi.org/project/manhole/] via a new hunter.actions.Manhole
action.

	Made the hunter.event.Event.handler a public but readonly property.

1.2.2 (2016-01-28)

	Fix broken import. Require fields>=4.0.

	Simplify a string check in Cython code.

1.2.1 (2016-01-27)

	Fix “KeyError: ‘normal’” bug in hunter.actions.CallPrinter. Create the NO_COLORS dict from the COLOR dicts.
Some keys were missing.

1.2.0 (2016-01-24)

	Fixed printouts of objects that return very large string in __repr__(). Trimmed to 512. Configurable in actions
with the repr_limit option.

	Improved validation of hunter.actions.VarsPrinter’s initializer.

	Added a hunter.actions.CallPrinter action.

1.1.0 (2016-01-21)

	Implemented a destructor (__dealloc__) for the Cython tracer.

	Improved the restoring of the previous tracer in the Cython tracer (use PyEval_SetTrace) directly.

	Removed tracer as an allowed filtering argument in hunter.Query.

	Add basic validation (must be callable) for positional arguments and actions passed into hunter.Q. Closes
#23 [https://github.com/ionelmc/python-hunter/issues/23].

	Fixed stdlib checks (wasn’t very reliable). Closes #24 [https://github.com/ionelmc/python-hunter/issues/24].

1.0.2 (2016-01-05)

	Fixed missing import in setup.py.

1.0.1 (2015-12-24)

	Fix a compile issue with the MSVC compiler (seems it don’t like the inline option on the fast_When_call).

1.0.0 (2015-12-24)

	Implemented fast tracer and query objects in Cython. MAY BE BACKWARDS INCOMPATIBLE

To force using the old pure-python implementation set the PUREPYTHONHUNTER environment variable to non-empty value.

	Added filtering operators: contains, startswith, endswith and in. Examples:

	Q(module_startswith='foo' will match events from foo, foo.bar and foobar.

	Q(module_startswith=['foo', 'bar'] will match events from foo, foo.bar, foobar, bar, bar.foo and baroo .

	Q(module_endswith='bar' will match events from foo.bar and foobar.

	Q(module_contains='ip' will match events from lipsum.

	Q(module_in=['foo', 'bar'] will match events from foo and bar.

	Q(module_regex=r"(re|sre.*)\b") will match events from ``re, re.foobar, srefoobar but not from repr.

	Removed the merge option. Now when you call hunter.trace(...) multiple times only the last one is active.
BACKWARDS INCOMPATIBLE

	Remove the previous_tracer handling. Now when you call hunter.trace(...) the previous tracer (whatever was in
sys.gettrace()) is disabled and restored when hunter.stop() is called. BACKWARDS INCOMPATIBLE

	Fixed CodePrinter to show module name if it fails to get any sources.

0.6.0 (2015-10-10)

	Added a clear_env_var option on the tracer (disables tracing in subprocess).

	Added force_colors option on hunter.actions.VarsPrinter and hunter.actions.CodePrinter.

	Allowed setting the stream to a file name (option on hunter.actions.VarsPrinter and
hunter.actions.CodePrinter).

	Bumped up the filename alignment to 40 cols.

	If not merging then self is not kept as a previous tracer anymore.
Closes #16 [https://github.com/ionelmc/python-hunter/issues/16].

	Fixed handling in VarsPrinter: properly print eval errors and don’t try to show anything if there’s an AttributeError.
Closes #18 [https://github.com/ionelmc/python-hunter/issues/18].

	Added a stdlib boolean flag (for filtering purposes).
Closes #15 [https://github.com/ionelmc/python-hunter/issues/15].

	Fixed broken frames that have “None” for filename or module (so they can still be treated as strings).

	Corrected output files in the install_lib command so that pip can uninstall the pth file.
This only works when it’s installed with pip (sadly, setup.py install/develop and pip install -e will still
leave pth garbage on pip uninstall hunter).

0.5.1 (2015-04-15)

	Fixed hunter.event.Event.globals to actually be the dict of global vars (it was just the locals).

0.5.0 (2015-04-06)

	Fixed hunter.And() and hunter.Or() “single argument unwrapping”.

	Implemented predicate compression. Example: Or(Or(a, b), c) is converted to Or(a, b, c).

	Renamed hunter.event.Event.source to hunter.event.Event.fullsource.

	Added hunter.event.Event.source that doesn’t do any fancy sourcecode tokenization.

	Fixed hunter.event.Event.fullsource return value for situations where the tokenizer would fail.

	Made the print function available in the PYTHONHUNTER env var payload.

	Added a __repr__ for hunter.event.Event.

0.4.0 (2015-03-29)

	Disabled colors for Jython.
Contributed by Claudiu Popa in #12 [https://github.com/ionelmc/python-hunter/pull/12].

	Test suite fixes for Windows.
Contributed by Claudiu Popa in #11 [https://github.com/ionelmc/python-hunter/pull/11].

	Added an introduction section in the docs.

	Implemented a prettier fallback for when no sources are available for that frame.

	Implemented fixups in cases where you use action classes as a predicates.

0.3.1 (2015-03-29)

	Forgot to merge some commits …

0.3.0 (2015-03-29)

	Added handling for internal repr failures.

	Fixed issues with displaying code that has non-ascii characters.

	Implemented better display for call frames so that when a function has decorators the
function definition is shown (instead of just the first decorator).
See: #8 [https://github.com/ionelmc/python-hunter/issues/8].

0.2.1 (2015-03-28)

	Added missing color entry for exception events.

	Added hunter.event.Event.line property. It returns the source code for the line being run.

0.2.0 (2015-03-27)

	Added color support (and colorama as dependency).

	Added support for expressions in hunter.actions.VarsPrinter.

	Breaking changes:

	Renamed F to hunter.Q(). And hunter.Q() is now just a convenience wrapper for
hunter.predicates.Query.

	Renamed the PYTHON_HUNTER env variable to PYTHONHUNTER.

	Changed hunter.predicates.When to take positional arguments.

	Changed output to show 2 path components (still not configurable).

	Changed hunter.actions.VarsPrinter to take positional arguments for the names.

	Improved error reporting for env variable activation (PYTHONHUNTER).

	Fixed env var activator (the .pth file) installation with setup.py install (the “egg installs”) and
setup.py develop/pip install -e (the “egg links”).

0.1.0 (2015-03-22)

	First release on PyPI.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | S
 | T
 | V
 | W

_

 	
 	__and__() (hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	__call__() (hunter.actions.CallPrinter method)

 	(hunter.actions.CodePrinter method)

 	(hunter.actions.Debugger method)

 	(hunter.actions.ErrorSnooper method)

 	(hunter.actions.Manhole method)

 	(hunter.actions.StackPrinter method)

 	(hunter.actions.VarsPrinter method)

 	(hunter.actions.VarsSnooper method)

 	(hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	(hunter.tracer.Tracer method)

 	__enter__() (hunter.tracer.Tracer method)

 	__eq__() (hunter.actions.ColorStreamAction method)

 	(hunter.actions.Debugger method)

 	(hunter.actions.Manhole method)

 	(hunter.event.Event method)

 	(hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	__exit__() (hunter.tracer.Tracer method)

 	__getitem__ (hunter.event.Event attribute)

 	__init__() (hunter.actions.CallPrinter method)

 	(hunter.actions.ColorStreamAction method)

 	(hunter.actions.Debugger method)

 	(hunter.actions.ErrorSnooper method)

 	(hunter.actions.Manhole method)

 	(hunter.actions.StackPrinter method)

 	(hunter.actions.VarsPrinter method)

 	(hunter.actions.VarsSnooper method)

 	(hunter.event.Event method)

 	(hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	(hunter.tracer.Tracer method)

 	__invert__() (hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	
 	__or__() (hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	__rand__() (hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	__reduce__() (hunter.event.Event method)

 	__repr__() (hunter.actions.ColorStreamAction method)

 	(hunter.actions.Debugger method)

 	(hunter.actions.Manhole method)

 	(hunter.event.Event method)

 	(hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	(hunter.tracer.Tracer method)

 	__ror__() (hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	__str__() (hunter.actions.ColorStreamAction method)

 	(hunter.actions.Debugger method)

 	(hunter.actions.Manhole method)

 	(hunter.predicates.And method)

 	(hunter.predicates.Backlog method)

 	(hunter.predicates.From method)

 	(hunter.predicates.Not method)

 	(hunter.predicates.Or method)

 	(hunter.predicates.Query method)

 	(hunter.predicates.When method)

 	__weakref__ (hunter.event.Event attribute)

 	(hunter.predicates.And attribute)

 	(hunter.predicates.Backlog attribute)

 	(hunter.predicates.From attribute)

 	(hunter.predicates.Not attribute)

 	(hunter.predicates.Or attribute)

 	(hunter.predicates.Query attribute)

 	(hunter.predicates.When attribute)

 	(hunter.tracer.Tracer attribute)

A

 	
 	And (class in hunter.predicates)

 	
 	And() (in module hunter)

 	arg (hunter.event.Event attribute)

B

 	
 	Backlog (class in hunter.predicates)

 	
 	Backlog() (in module hunter)

 	builtin (hunter.event.Event attribute)

C

 	
 	CallPrinter (class in hunter.actions)

 	calls (hunter.event.Event attribute)

 	(hunter.tracer.Tracer attribute)

 	
 	code (hunter.event.Event attribute)

 	CodePrinter (class in hunter.actions)

 	ColorStreamAction (class in hunter.actions)

D

 	
 	Debugger (class in hunter.actions)

 	depth (hunter.event.Event attribute)

 	(hunter.tracer.Tracer attribute)

 	
 	detach() (hunter.event.Event method)

 	detached (hunter.event.Event attribute)

E

 	
 	ErrorSnooper (class in hunter.actions)

 	
 	Event (class in hunter.event)

F

 	
 	filename (hunter.event.Event attribute)

 	filename_prefix() (hunter.actions.ColorStreamAction method)

 	filter() (hunter.predicates.Backlog method)

 	frame (hunter.event.Event attribute)

 	
 	From (class in hunter.predicates)

 	From() (in module hunter)

 	fullsource (hunter.event.Event attribute)

 	function (hunter.event.Event attribute)

 	function_object (hunter.event.Event attribute)

G

 	
 	globals (hunter.event.Event attribute)

H

 	
 	handler (hunter.tracer.Tracer attribute)

I

 	
 	instruction (hunter.event.Event attribute)

K

 	
 	kind (hunter.event.Event attribute)

L

 	
 	lineno (hunter.event.Event attribute)

 	
 	locals (hunter.event.Event attribute)

M

 	
 	Manhole (class in hunter.actions)

 	
 	module (hunter.event.Event attribute)

N

 	
 	Not (class in hunter.predicates)

 	
 	Not() (in module hunter)

O

 	
 	Or (class in hunter.predicates)

 	
 	Or() (in module hunter)

 	output() (hunter.actions.ColorStreamAction method)

P

 	
 	pid_prefix() (hunter.actions.ColorStreamAction method)

 	
 	previous (hunter.tracer.Tracer attribute)

 	profiling_mode (hunter.tracer.Tracer attribute)

Q

 	
 	Q() (in module hunter)

 	
 	Query (class in hunter.predicates)

S

 	
 	source (hunter.event.Event attribute)

 	StackPrinter (class in hunter.actions)

 	
 	stdlib (hunter.event.Event attribute)

 	stop() (hunter.tracer.Tracer method)

 	(in module hunter)

T

 	
 	thread_prefix() (hunter.actions.ColorStreamAction method)

 	threadid (hunter.event.Event attribute)

 	threading_support (hunter.event.Event attribute)

 	(hunter.tracer.Tracer attribute)

 	threadname (hunter.event.Event attribute)

 	
 	trace() (hunter.tracer.Tracer method)

 	(in module hunter)

 	Tracer (class in hunter.tracer)

 	try_repr() (hunter.actions.ColorStreamAction method)

 	try_source() (hunter.actions.ColorStreamAction method)

 	try_str() (hunter.actions.ColorStreamAction method)

V

 	
 	VarsPrinter (class in hunter.actions)

 	
 	VarsSnooper (class in hunter.actions)

W

 	
 	When (class in hunter.predicates)

 	
 	wrap() (in module hunter)

 _static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_images/code-trace.png
>>> os.path.join('a’, 'b")

/usr/1ib/python3.6/posixpath.py:75 call def join(a, *p):
/usr/1ib/python3.6/posixpath.py:80 line a = os.fspath(a)
/usr/1ib/python3.6/posixpath.py:81 line sep = _get_sep(a)
Jusr/1ib/python3.6/posixpath.py:41 call def _get_sep(path):
/usr/1ib/python3.6/posixpath.py:42 line if isinstance(path, bytes):
/usr/1ib/python3.6/posixpath.py:45 line return */"
/usr/1ib/python3.6/posixpath.py:45 return return '/

eee return value: '/
/usr/1ib/python3.6/posixpath.py:82 line path = a
/usr/1ib/python3.6/posixpath.py:83 line try:
/usr/1ib/python3.6/posixpath.py:84 line if not p:
/usr/1ib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
/usr/1ib/python3.6/posixpath.py:87 line if b.startswith(sep):
/usr/1ib/python3.6/posixpath.py:89 line elif not path or path.endswith(sep):
Jusr/1ib/python3.6/posixpath.py:92 line path += sep + b
/usr/1ib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
/usr/1ib/python3.6/posixpath.py:96 line return path
/usr/1ib/python3.6/posixpath.py:96 return return path

return value: ‘a/b’
‘a/b"

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 Documentation

 		
 Getting started

 		
 Actions

 		
 Tracing processes

 		
 Environment variable activation

 		
 Filtering DSL

 		
 Development

 		
 Design notes

 		
 FAQ

 		
 Why not Smiley?

 		
 Why not pytrace?

 		
 Why not PySnooper or snoop?

 		
 Why not coverage?

 		
 Projects using Hunter

 		
 Installation

 		
 Introduction

 		
 Installation

 		
 The trace function

 		
 The Q function

 		
 Composing

 		
 Operators

 		
 Activation

 		
 from code

 		
 with an environment variable

 		
 with a CLI tool

 		
 Remote tracing

 		
 The CLI

 		
 Configuration

 		
 Filtering

 		
 Cookbook

 		
 Walkthrough

 		
 Packaging

 		
 Typical

 		
 Debugging a test

 		
 Needle in the haystack

 		
 Stop after N calls

 		
 “Probe” - lightweight tracing

 		
 Silenced exception runtime analysis

 		
 Profiling

 		
 Reference

 		
 Helpers

 		
 Actions

 		
 Predicates

 		
 Internals

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 3.6.1 (2023-04-26)

 		
 3.6.0 (2023-04-25)

 		
 3.5.1 (2022-09-27)

 		
 3.5.0 (2022-09-11)

 		
 3.4.3 (2021-12-15)

 		
 3.4.2 (2021-12-15)

 		
 3.4.1 (2021-12-14)

 		
 3.4.0 (2021-12-14)

 		
 3.3.8 (2021-06-23)

 		
 3.3.7 (2021-06-23)

 		
 3.3.6 (2021-06-23)

 		
 3.3.5 (2021-06-11)

 		
 3.3.3 (2021-05-04)

 		
 3.3.2 (2021-03-25)

 		
 3.3.1 (2020-10-24)

 		
 3.3.0 (2020-10-23)

 		
 3.2.2 (2020-09-04)

 		
 3.2.1 (2020-08-18)

 		
 3.2.0 (2020-08-16)

 		
 3.1.3 (2020-02-02)

 		
 3.1.2 (2019-01-19)

 		
 3.1.1 (2019-01-19)

 		
 3.1.0 (2019-01-19)

 		
 3.0.5 (2019-12-06)

 		
 3.0.4 (2019-10-26)

 		
 3.0.3 (2019-10-13)

 		
 3.0.2 (2019-10-10)

 		
 3.0.1 (2019-06-17)

 		
 3.0.0 (2019-06-17)

 		
 2.2.1 (2019-01-19)

 		
 2.2.0 (2019-01-19)

 		
 2.1.0 (2018-11-17)

 		
 2.0.2 (2017-11-24)

 		
 2.0.1 (2017-09-09)

 		
 2.0.0 (2017-09-02)

 		
 1.4.1 (2016-09-24)

 		
 1.4.0 (2016-09-24)

 		
 1.3.0 (2016-04-14)

 		
 1.2.2 (2016-01-28)

 		
 1.2.1 (2016-01-27)

 		
 1.2.0 (2016-01-24)

 		
 1.1.0 (2016-01-21)

 		
 1.0.2 (2016-01-05)

 		
 1.0.1 (2015-12-24)

 		
 1.0.0 (2015-12-24)

 		
 0.6.0 (2015-10-10)

 		
 0.5.1 (2015-04-15)

 		
 0.5.0 (2015-04-06)

 		
 0.4.0 (2015-03-29)

 		
 0.3.1 (2015-03-29)

 		
 0.3.0 (2015-03-29)

 		
 0.2.1 (2015-03-28)

 		
 0.2.0 (2015-03-27)

 		
 0.1.0 (2015-03-22)

_images/vars-trace.png
>>> os.path.join("a", 'b")
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.
/usr/1ib/python3.

‘a/b"

6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.
6/posixpath.

py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:
py:

BEREEEESRRARYY
SEREEEGRREREES

FREERRBLBRALRRRR

call => join(a='a’)

line a = os.fspath(a)

line sep = _get_sep(a)

call => _get_sep(path="a")

call [path => *a’']

line if isinstance(path, bytes):
line [path

line

line [path

return <=

return [path

line path = a

line

line

line

line

line for b in map(os.fspath, p):
line [path => *a']

line if b.startswith(sep):

line [path => *a']

line elif not path or path.endswith(sep):
line [path => *a']

line path += sep + b

line [path => *a']

line for b in map(os.fspath, p):
line [path => 'a/b’]

line return path

line [path => 'a/b’]

return <= join: ‘a/b’

return [path => *a/b’]

_images/simple-trace.png
>>> os.path.join('a’, 'b")

/Jusr/1ib/python3.6/posixpath.py:75 call => join(a='a’)
/usr/1ib/python3.6/posixpath.py:80 line a = os.fspath(a)
/usr/1ib/python3.6/posixpath.py:81 line sep = _get_sep(a)
Jusr/1ib/python3.6/posixpath.py:41 call => _get_sep(path="a")
/usr/1ib/python3.6/posixpath.py:42 line if isinstance(path, bytes):
Jusr/1ib/python3.6/posixpath.py:45 line return */*
/usr/1ib/python3.6/posixpath.py:45 return <= _get_sep:
Jusr/1ib/python3.6/posixpath.py:82 line path = a
/usr/1ib/python3.6/posixpath.py:83 line ©
/usr/1ib/python3.6/posixpath.py:84 line if not p:
Jusr/1ib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
/usr/1ib/python3.6/posixpath.py:87 line if b.startswith(sep):
Jusr/1ib/python3.6/posixpath.py:89 line elif not path or path.endswith(sep):
/usr/1ib/python3.6/posixpath.py:92 line path += sep + b
Jusr/1ib/python3.6/posixpath.py:86 line for b in map(os.fspath, p):
/usr/1ib/python3.6/posixpath.py:96 line return path
/usr/1ib/python3.6/posixpath.py:96 return join: ‘a/b’

‘a/b"

_images/tree-trace.png
>>> foo.func()
not shown in trace

/home/7onel/osp/python-hunter/foo.py:8 Tine print(mumbo
jumbo

/home/7onel/osp/python-hunter/foo.py:9 Tine mumbo = 2
2

/home/7onel/osp/python-hunter/foo.py:1 call def bar():

> /home/ionel/osp/python-hunter/foo.py(2)bar ()
> execution_will_get_stopped # cause we get a Pdb session here

(pdby I

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

